1.Liu, M., Tan, L., & Cao, S. (2022). Performance Prediction and Geometry Optimization for Application of Pump as Turbine: A Review. Front. Energy Res. 9, 818118. doi: 10.3389/fenrg.2021. 818118.
2.Binama, M., Su, W. T., Li, X. B., Li, F. C., Wei, X. Z., & An, S. (2017). Investigation on Pump as Turbine (PAT) Technical Aspects for Micro Hydropower Schemes: A State-Of-The-Art Review. Renew. Sust. Energ. Rev. 79, 148-179. doi:10.1016/j.rser.2017.04.071.
3.Motwani, K. H., Jain, S. V., & Patel, R. N. (2013). Cost Analysis of Pump as Turbine for Pico Hydropower Plants - A Case Study. Proced. Eng. 51, 721-726. doi:10.1016/j.proeng.2013.01.103.
4.Carravetta, A., Del Giudice, G., Fecarotta, O., Morani, M. C., & Ramos, H. M. (2022). A New Low-Cost Technology Based on Pump as Turbines for Energy Recovery in Peripheral Water Networks Branches. Water, 14 (10), 1526.
5.Araujo, L. S., Ramos, H., & Coelho, S. T. (2006). Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour. Manage. 20, 133-149. doi: 10.1007/ s11269-006-4635-3.
6.Samora, I., Manso, P., Franca, M. J., Schleiss, A. J., & Ramos, H. M. (2016). Energy recovery using micro-hydropower technology in water supply systems: The case study of the city of Fribourg. Water. 8 (8), 344.
7.Mitrovic, D., Novara, D., García Morillo, J., Rodríguez Díaz, J. A., & Mc Nabola, A. (2022). Prediction of Global Efficiency and Economic Viability of Replacing PRVs with Hydraulically Regulated Pump-as-Turbines at Instrumented Sites within Water Distribution Networks. Journal of Water Resources Planning and Management, 148 (1), 04021089.
8.Carravetta, A., Del Giudice, G., Fecarotta, O., & Ramos, H. (2013). Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness. Water. 5, 1211-1225. doi:10.3390/w5031211.
9.Buono, D., Frosina, E., Mazzone, A., Cesaro, U., & Senatore, A. (2015). Study of a Pump as Turbine for a Hydraulic Urban Network Using a Tridimensional CFD Modeling Methodology. Energ. Proced. 82, 201-208. doi:10.1016/ j.egypro.2015.12.020.
10.Rossi, M., Righetti, M., & Renzi, M. (2016). Pump-as-Turbine for Energy Recovery Applications: the Case Study of an Aqueduct. Energ. Proced. 101: 1207-1214. doi:10.1016/j.egypro. 2016.11.163.
11.Lydon, T., Coughlan, P., & McNabola, A. (2017). Pump-As-Turbine: Characterization as an Energy Recovery Device for the Water Distribution Network. J. Hydraul. Eng. 143 (8), 04017020. doi:10.1061/(asce) hy.1943-7900.0001316.
12.De Marchis, M., Fontanazza, C. M., Freni, G., Messineo, A., Milici, B., Napoli, E., Nataro, V., Puleo, V., & Scopa, A. (2014). Energy Recovery in Water Distribution Networks. Implementation of Pumps as Turbine in a Dynamic Numerical Model. Proced. Eng. 70, 439-448.
13.Renzi, M., Rudolf, P., Štefan, D., Nigro, A., & Rossi, M. (2019). Installation of an Axial Pump-As-Turbine (PaT) in a Wastewater Sewer of an Oil Refinery: A Case Study. Appl. Energ. 250, 665-676. doi:10.1016/j.apenergy.2019.05.052.
14.Nourbakhsh, A., & Derakhshan, SH. (2006). Analyzing and prediction of the best performance point of pump rotating as turbine. Journal of Faculty of Engineering (University of Tehran),39 (6), 765-771. [Translated in Persian]
15.Abdel Fatah, M., Ashraf, A., & Al Bazedi, G. A. (2022). Model and protected design of water piping system to minimize the water hammer effect. Chemical Engineering and Pilot Plant Department, Engineering Research Division, National Research Center, Dokki, Cairo, Egypt.
16.Wood, F. M. (1970). History of Waterhammer. Civil Engineering Research Report, #65, Queens University, Canada.
17.Brunone, B., Karney, B. W., Mecarelli, M., & Ferrante, M. (2000). Velocity profiles and unsteady pipe friction in transient flow. Journal of water resources planning and management, 126 (4), 236-244.
18.Pal, S., Hanmaiahgari, P. R., & Karney, B. W. (2021). An overview of the numerical approaches to water hammer modelling: The ongoing quest for practical and accurate numerical approaches. Water. 13 (11), 1597.
19.Urbanowicz, K. (2017). Computational compliance criteria in water hammer modelling. In E3S Web of Conferences. 19, 03021. EDP Sciences.
20.Streeter, V. L., & Lai, C. (1962). Waterhammer Analysis Including Fluid Friction. Journal of Hydraulics Division, ASCE. 88 (3), 79-112.
21.Wylie, E. B., & Streeter, V. L. (1993). Fluid Transients in Systems. Prentice-Hall, Englewood Cliffs, New Jersey.
22.Pejovic, S., Zhang, Q. F., Karney, B., & Gajic, A. (2011). Analysis of pump-turbine 'S'instability and reverse water hammer incidents in hydropower systems. In 4-th International meeting on Cavitation and dynamic problems in hydraulic machinery and systems (26-28). IAHR.
23.Hassanzadeh, Y., Kardan, N., Hassanzadeh, M., & Zamanian, J. (2017). Comparison of the Controlling Methods of the Maximum and Minimum Pressures Resulting from Water Hammer Phenomenon in High Pressure Pumping Stations. Water and Soil Science. 27 (1), 121-134. [Translated in Persian[
24.Parsasadr, A., Ahmadi, A., Keramat, A. & Lashkarara, B. (2015). Waterhammer caused by intermittent and simultaneously pump failure in pipe systems including series pump groups. Journal of Solid and Fluid Mechanics,
4 (4), 207-221. [Translated in Persian]
25.Kramer, M., Terheiden, K., & Wieprecht, S. (2018). Pumps as turbines for efficient energy recovery in water supply networks. Renewable Energy. 122, 17-25.
26.Chaudhry, M. H. (2014). Applied hydraulic transients (Vol. 415). New York: Springer.
27.Bentley HAMMER. (2018). Bentley Hammer CONNECT Edition Help. Watertown, CT, USA. Available from: https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-12FD39B9-2B8A-4C84-938F-0583CAD2AB23.html.
28.Hwang, N. H., Houghtalen, R. J., Akan, A. O., & Hwang, N. H. (1996). Fundamentals of hydraulic engineering systems (No. TC160. H8213 1981.). Upper Saddle River, NJ: Prentice Hall.
29.Abuiziah, I., Oulhaj, A., Sebari, K., & Ouazar, D. (2013). Controlling transient flow in Pipeline systems by desurging tank with automatic air control. International Journal of Physical, Natural Science and Engineering, 7 (12), 334-340.
30.Kikuta, H., Shimokawa, K., Izutsu, K., Tsukamoto, T., & Nakamura, S. (2019). March. Unusual pressure rise during the load rejection at a Deriaz turbine. In IOP Conference Series: Earth and Environmental Science (240: 2. 022058). IOP Publishing.
31.Adamkowski, A., & Lewandowski, M. (2015). Preventing destructive effects of water hammer in hydropower plant penstocks. In Proceedings of the ACI's Hydropower Development Conference: Europe.