Broccoli response to application of natural nanobiochar amendment, deficit irrigation and nitrogen fertigation

Document Type : Complete scientific research article

Authors

1 Ph.D. Student, Dept. of Water Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

2 Corresponding Author, Professor, Dept. of Water Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

3 Professor, Dept. of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

4 Professor, Dept. of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran

Abstract

Background and objectives: Due to several factors, including anthropogenic global warming, drought is increasing in many arable areas which is one of the major threats to global food security. Abiotic stresses such as water deficit severely reduce crop productivity. Using strategies subsurface irrigation with porous clay capsules and natural nanobiochar amendment could be pivotal in reducing water and nitrogen fertilizer inputs as well as the effects of abiotic stresses on plants. Biochar addition to soil may improve soil physical and chemical characteristics. Soil water retention in the root zone enhances under the same irrigation schedule following biochar application. Biochar could improve plant access to soil nutrients and pivotal in reducing fertilizer inputs to agricultural soils.

Materials and methods: Greenhouse experiments were conducted in two years (2019 and 2020) on broccoli planted in sieved and non-sieved samples of a loam soil amended with natural nanobiochar (i.e., 0 and 10% by weight) under three irrigation regimes (i.e., 100, 75, and 50% of full irrigation) and two levels of nitrogen fertilizer (i.e., 225 and 300 kgha-1 N). The irrigation system was porous clay pitcher subsurface irrigation. The full irrigation (FI) treatments were watered to refill the pore space in the rooting zone to the field capacity (100% FI), while in deficit irrigation treatments plants received 75% of the full irrigation (75% FI) or 50% of the full irrigation (50% FI). Fertigation treatments included two levels of N fertigation (i.e., 225 kg N ha-1 and 300 kg N ha-1) in the seedling, vegetative growth and green head stages were applied. Physiological and morphological traits of broccoli including secondary head fresh and dry weights, secondary head density, concentration of nutrients, total chlorophyll and leaf proline were investigated.

Results: Plants exposed to deficit irrigation and nitrogen fertigation presented a significant decrease in head fresh and dry weights, head density and also total chlorophyll, while an increase in the leaf proline content was observed.

The application of NNB in soil mitigated the drought and nutritional stresses effects on the morphological traits. The results showed significant effects of the natural nanobiochar application in sieved and none-sieved soils on head fresh and dry weight, head density, total chlorophyll and leaf proline for both seasons (2019 and 2020). Natural nanobiochar addition to both sieved and non-sieved soils improved the head fresh and dry weights, head density, and total chlorophyll content. Moreover, it significantly reduced the leaf proline of broccoli plant under deficit irrigation and nitrogen fertigation. The highest values of fresh and dry weight, head density and calcium, magnesium and chlorophyll concentrations were 99.26 g, 39.79 g, 0.92 g cm-3, 5.96 mg g-1, 3.52 mg g-1 and 2.52 mg g-1 in SNAS+NR2+FI, NNAS+NR2+FI, NUS+NR2+FI, SNAS+NR2+FI, SNAS+NR2+FI and NUS+NR2+FI treatments, respectively. As well as, the lowest value of leaf proline was 0.08 µmol g-1 in NNAS+NR2+FI treatment.

Conclusion: Our study demonstrated some of the beneficial effects of natural nanobiochar as an organic amendment for promoting crop productivity. Hence, the integration of natural nanobiochar addition along with deficit irrigation and low N fertigation condition could be considered as a viable and optimum approach in terms of water and fertilizer saving, yield and cost. Thus, the combination of this technique and sub-surface irrigation with the porous clay pitcher system will particularly be useful in arid regions that frequently suffer with water shortages condition.

Keywords

Main Subjects


1.Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar. 2, 379-420.
2.Li, C., Xiong, Y., Qu, Z., Xu, X., Huang, Q., & Huang, G. (2018). Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma. 331, 100-108.
3.Du, Z., Xiao, Y., Qi, X., Liu, Y., Fan, X., & Li, Z. (2018). Peanut-shell biochar and biogas slurry improve soil properties in the North China Plain: a four-year field study. Scientific reports. 8, 1-9.
4.Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma. 361, 114055.
5.Safari, S., Nazari, F., Vafaee, Y., & Teixeira da Silva, J. A. (2022). Impact of Rice Husk Biochar on Drought Stress Tolerance in Perennial Ryegrass (Lolium perenne L.). Journal of Plant Growth Regulation. 1-17.
6.Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry. 103, 1-15.
7.Beusch, C., Cierjacks, A., Böhm, J., Mertens, J., Bischoff, W. A., de Araújo Filho, J. C., & Kaupenjohann, M. (2019). Biochar vs. clay: Comparison of their effects on nutrient retention of a tropical Arenosol. Geoderma. 337, 524-535.
8.Igalavithana, A. D., Ok, Y. S., Usman, A. R., Al‐Wabel, M. I., Oleszczuk, P., & Lee, S. S. (2016). The effects of biochar amendment on soil fertility. Agricultural and environmental applications of biochar: Advances and barriers. 63, 123-144.
9.Wang, Y., Su, J., Ali, A., Chang, Q., Bai, Y., & Gao, Z. (2022). Enhanced nitrate, manganese, and phenol removal by polyvinyl alcohol/sodium alginate with biochar gel beads immobilized bioreactor: Performance, mechanism, and bacterial diversity. Bioresource Technology. 348, 126818.
10.Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric. Ecosyst. Environ. 206, 46-59.
11.Montoya, D., Fernández, J. A., Franco, J. A., and del Carmen Martínez Ballesta, M. (2022). Enriched‐biochar application increases broccoli nutritional and phytochemical content without detrimental effect on yield. Journal of the Science of Food and Agriculture.
12.Gunarathna, M. H. J. P., Sakai, K., Nakandakari, T., Momii, K., Onodera, T., Kaneshiro, H., Uehara, H., & Wakasugi, K. (2018). Optimized subsurface irrigation system: The future of sugarcane irrigation. Water. 10, 314.
13.Hamad, A. A. A., Wei, Q., Wan, L., Xu, J., Hamoud, Y. A., Li, Y., & Shaghaleh, H. (2022). Subsurface Drip Irrigation with Emitters Placed at Suitable Depth Can Mitigate N2O Emissions and Enhance Chinese Cabbage Yield under Greenhouse Cultivation. Agronomy. 12, 745.
14.Irmak, S., Mohammed, A. T., & Kukal, M. S. (2022). Maize response to coupled irrigation and nitrogen fertilization under center pivot, subsurface drip and surface (furrow) irrigation: Growth, development and productivity. Agricultural Water Management. 263, 107457.
15.Karandish, F., & Šimůnek, J. (2017). Two-dimensional modeling of nitrogen and water dynamics for various
N-managed water-saving irrigation strategies using HYDRUS. Agricultural Water Management. 193, 174-190.
16.Alotaibi, M., El-Hendawy, S., Mohammed, N., Alsamin, B., & Refay, Y. (2023). Appropriate application methods for salicylic acid and plant nutrients combinations to promote morpho-physiological traits, production, and water use efficiency of wheat under normal and deficit irrigation in an arid climate. Plant . 12(6), 1368.
17.Martínez de Azagra Paredes, A., Del Río San José, J., Reque Kilchenmann, J., Diez Hernández, J. M., & Sanz Ronda, F. J. (2022). Methods for Watering Seedlings in Arid Zones. Forests. 13, 351.
18.Cai, Y., Wu, P., Zhang, L., Zhu, D., Chen, J., Wu, S., & Zhao, X. (2017). Simulation of soil water movement under subsurface irrigation with porous ceramic emitter. Agricultural Water Management. 192, 244-256.
19.Li, Y., Liu, J., Hu, M., & Zhang, Z. (2017). Numerical modeling of ice-water system response based on Rankine source method and finite difference method. Ocean Engineering. 138, 1-8.
20.Sánchez-García, M., Sánchez-Monedero, M. A., & Cayuela, M. L. (2020). N2O emissions during Brassica oleracea cultivation: Interaction of biochar with mineral and organic fertilization. European Journal of Agronomy. 115, 126021.
21.Shi, W., Ju, Y., Bian, R., Li, L., Joseph, S., Mitchell, D.R., Munroe, P., Taherymoosavi, S., & Pan, G. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment. 701, 134424.
22.Lan, K., & Yao, Y. (2019). Integrating life cycle assessment and agent-based modeling: a dynamic modeling framework for sustainable agricultural systems. Journal of Cleaner Production. 238, 117853.
23.Campbell, B. M., Beare, D. J., Bennett, E. M., Hall-Spencer, J. M., Ingram, J. S., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J. A., & Shindell, D. (2017). Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society. 22.
24.Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tang, J. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution. 233, 54-63.
25.Grieve, C. M., Poss, J. A., Grattan, S. R., Suarez, D. L., & Smith, T. E. (2010). The combined effects of salinity and excess boron on mineral ion relations in broccoli. Scientia Horticulturae. 125, 179-187.
26.Munawar, A., Akram, N. A., Ahmad, A., & Ashraf, M. (2019). Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Scientia Horticulturae. 254, 7-13.
27.Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil. 39, 205-207.
28.Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods in Enzymology. Academic Press. 148, 350-382.
29.Razzaq, M., Akram, N. A., Ashraf, M., Naz, H., & Al-Qurainy, F. (2017). Interactive effect of drought and nitrogen on growth, some key physiological attributes and oxidative defense system in carrot (Daucus carota L.) plants. Scientia Horticulturae. 225, 373-379.
30.Dastogeer, K. M. (2018). Influence of fungal endophytes on plant physiology is more pronounced under stress
than well-watered conditions: a meta-analysis. Planta. 248, 1403-1416.
31.Yaseen, R., Shafi, J., Ahmad, W., Rana, M. S., Salim, M., & Qaisrani, S. A. (2014). Effect of deficit irrigation and mulch on soil physical properties, growth and yield of maize. Environ. Ecol. Res. 2, 122-137.
32.Albert, B., Le Cahérec, F., Niogret, M. F., Faes, P., Avice, J. C., Leport, L., & Bouchereau, A. (2012) Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions. Planta. 236, 659-676.
33.Souri, M. K., & Hatamian, M. (2019). Aminochelates in plant nutrition: a review. Journal of Plant Nutrition. 42, 67-78.
34.Agbna, G. H., Dongli, S., Zhipeng, L., Elshaikh, N. A., Guangcheng, S., & Timm, L. C. (2017). Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae. 222, 90-101.
35.Ünlü, M., Kanber, R., Koç, D. L., Tekin, S., & Kapur, B. (2011). Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment. Agricultural Water Management. 98, 597-605.
36.Fracchiolla, M., Renna, M., D’Imperio, M., Lasorella, C., Santamaria, P., & Cazzato, E. (2020). Living mulch and organic fertilization to improve weed management, yield and quality of broccoli raab in organic farming. Plants. 9, 177.
37.Kim, S., Kim, S., Kiniry, J. R., & Ku, K. M. (2021). A hybrid decision tool for optimizing broccoli production in a changing climate. Horticulture, Environment, and Biotechnology. 62, 299-312.
38.Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science. 60, 393-404.
39.Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., & Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant and Soil. 373, 583-594.
40.Zhang, Q., Song, Y., Wu, Z., Yan, X., Gunina, A., Kuzyakov, Y., & Xiong, Z. (2020). Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. Journal of Cleaner Production. 242, 118435.
41.Zhang, Zx., Dong, X., Wang, S., & Pu, X. (2020). Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Scientific reports. 10, 1-10.
42.Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C. R., Abd El-Mageed, T. A., Rady, M. M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany. 127, 333-347.
43.Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma. 274, 28-34.
44.Moreno-Cornejo, J., Caballero-Lajarín, A., Faz, Á., & Zornoza, R. (2017). Pepper crop residues and chemical fertilizers effect on soil fertility, yield and nutritional status in a crop of Brassica oleracea. Journal of soil science and plant nutrition. 17, 648-661.
45.Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., & Kaiser, M. (2020). Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems & Environment. 295, 106882.
46.Zanutel, M., Garré, S., & Bielders, C. L. (2022). Long‐term effect of biochar on physical properties of agricultural soils with different textures at pre‐industrial charcoal kiln sites in Wallonia (Belgium). European Journal of Soil Science. 73, 13157.
47.Dominguez-Perles, R., Moreno, D. A., Carvajal, M., & Garcia-Viguera, C. (2011). Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innovative Food Science & Emerging Technologies.12, 361-368.
48.Saneoka, H., Moghaieb, R. E., Premachandra, G. S., & Fujita, K. (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmental and Experimental Botany. 52, 131-138.
49.Wang, D., Fonte, S. J., Parikh, S. J., Six, J., & Scow, K. M. (2017). Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma. 303, 110-117.
50.Ma, N., Zhang, L., Zhang, Y., Yang, L., Yu, C., Yin, G., Doane, T. A., Wu, Z., Zhu, P., & Ma, X. (2016). Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PloS one. 11, 154091.
51.Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry. 40, 1-15.
52.Abd El-Mageed, T. A., Belal, E. E., Rady, M. O., Abd El-Mageed, S. A., Mansour, E., Awad, M. F., & Semida, W. M. (2021). Acidified biochar as a soil amendment to drought stressed (Vicia faba L.) plants: Influences on growth and productivity, nutrient status, and water use efficiency. Agronomy. 11, 1290.
53.Haghighi, T. M., Saharkhiz, M. J., Ramezanian, A., & Zarei, M. (2023). The use of silicon and mycorrhizal fungi to mitigate changes in licorice leaf micromorphology, chlorophyll fluorescence, and rutin content under water-deficit conditions. Plant Physiology and Biochemistry. 197, 107662.
54.Tamez, C., Morelius, E. W., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. (2019). Biochemical and physiological effects of copper compounds/nanoparticles on sugarcane (Saccharum officinarum). Science of the Total Environment. 649, 554-562.
55.Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., Nguyen, A. T., Dinh, N. T. T., Hoang, S. A., & Van Ha, C. (2022). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation. 41, 364-375.
56.Namvar, A., & Khandan, T. (2015). Inoculation of rapeseed under different rates of inorganic nitrogen and sulfur fertilizer: impact on water relations, cell membrane stability, chlorophyll content and yield. Archives of Agronomy and Soil Science. 61, 1137-1149.
57.Abd El-Mageed, T. A., El-Sherif, A. M., Abd El-Mageed, S. A., & Abdou, N. M. (2019). A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil. Agricultural Water Management. 226, 105831.
58.Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil biology and biochemistry. 43, 1812-1836.
59.Speratti, A. B., Romanyà, J., Garcia-Pausas, J., & Johnson, M. S. (2018). Determining the stability of sugarcane filtercake biochar in soils with contrasting levels of organic matter. Agriculture. 8, 71.
60.Bazrgar, G., Kalat, S. M. N., Khorasani, S. K., Ghasemi, M., & Kelidari, A. (2023). Effect of deficit irrigation on physiological, biochemical, and yield characteristics in three baby corn cultivars (Zea mays L.). Heliyon. 9 (4).
61.Chevilly, S., Dolz-Edo, L., López-Nicolás, J. M., Morcillo, L., Vilagrosa, A., Yenush, L., & Mulet, J. M. (2021a). Physiological and molecular characterization of the differential response of broccoli (Brassica oleracea var. Italica) cultivars reveals limiting factors for broccoli tolerance to drought stress. Journal of agricultural and food chemistry. 69, 10394-10404.
62.Chevilly, S., Dolz-Edo, L., Morcillo, L., Vilagrosa, A., López-Nicolás, J. M., Yenush, L., & Mulet, J. M. (2021b). Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica). BMC plant biology. 21, 1-16.
63.John, R., Ganeshan, U., Singh, B. N., Kaul, T., Reddy, M. K., Sopory, S. K., & Rajam, M. V. (2016). Over-expression of topoisomerase II enhances salt stress tolerance in tobacco. Frontiers in Plant Science. 7, 1280.
64.Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino acids. 35, 753-759.
65.Chen, C., & Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences. 102, 3459-3464.
66.Ashraf, M., & Foolad, M. R. (2007). Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ. Exp. Bot. 59, 206-216.
67.Gzik, A. (1996). Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environmental and Experimental Botany. 36, 29-38.
68.Demiral, T., & Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and experimental botany. 53, 247-257.
69.Monreal, J. A., Jimenez, E. T., Remesal, E., Morillo-Velarde, R., García-Mauriño, S., & Echevarría, C. (2007). Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany. 60, 257-267.
70.Raymond, M. J., & Smirnoff, N. (2002). Proline metabolism and transport in maize seedlings at low water potential. Annals of botany. 89, 813-823.
71.Bandurska, H. (2004). Free proline accumulation in leaves of cultivated plant species under water deficit conditions. Journal of the Polish Botanical Society. 57, 57-67.