1.Gunduz, O., & Simsek, C. (2011). Influence of climate change on shallow ground water resources: the link between precipitation and ground water levels in alluvial system. In proceedings of the NATO advanced research workshop (ARW) on climate change and its effects on water resources, edited by A. Baba, G. Tayffur, O. Gunduz, K.W.F. Howard, M.J. Fricdel. Journal of Hydrology, 23 (51), 225-234.
2.Fistikoglu, O., Gunduz, O., & Simsek, C. (2016). The correlation between statistically downscaled precipitation data and groundwater level Records in North-Western Turkey. Water Resources Management, 15 (7), 122-129.
3.Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying ground water recharge in the Grand river watershed Ontario. Journal of hydrology, 5 (338), 237-250.
4.Bai, M. D., & Jha, M. K. (2012). Hydrologic time series analysis: theory and practice. Springer Science & Business Media.
5.Bai, C., Hong, M., Wang, D., Zhang, R., & Qian, L. (2014). Evolving an information diffusion model using a genetic algorithm for monthly river discharge time series interpolation and forecasting. Journal of Hydrometeorology, 15 (6), 2236-2249.
6.Bisht, D., & Jangid, A. (2011). Discharge modelling using adaptive neuro-fuzzy inference system. International Journal
of Advanced Science and Technology, 31 (1), 99-114.
7.Rashmi, N., & Sudhir, N. (2017). Multivariate rainfall-runoff modeling of Kulfo River. Journal of Current Environmental Engineering Continued as Current Environmental Management, 4 (3), 177-188.
8.Tsakiri, K. G., Marsellos, A., & Kapetanakis, S. (2018). Artificial neural network and multiple linear regression for flood prediction in Mohawk River, New York. Water, 10 (9), 1158.
9.Mohtasham, M., Dehghani, A.A., Akbarpour, A., & Meftah Halghi, M. (2017). Evaluation of Artificial Neural Networks and MODFLOW Numerical Model in Forecasting Groundwater Table (Case Study: Birjand Aquifer, Southern Khorasan). Iranian Journal of Irrigation and Drainage, 1 (4), 1-10. [In Persian]
10.Mokhtari, Z., Nazemi, A. H., & Nadiri, A. (2013). Forecasting the underground water level with artificial neural networks model (Case study: Shabestar plain). Journal of Geotechnical Geology, 8 (4), 345-353. [In Persian]
11.Abareshi, F., Meftah Halghi, M., Sanikhani, H., & Dehghani, A.A. (2014). Comparison of three intelligence techniques for predicting water table depth fluctuations (Case study: Zarringol plain). Journal of Water and Soil Conservation, 21 (1), 163-180. [In Persian]
12.Saeedi Razavi, B., & Arab, A. (2019). Groundwater Level Prediction of Ajabshir Plain using Fuzzy Logic, Neural Network Models and Time Series. Hydrogeology, 3 (2), 69-81. [In Persian]
13.Jandaghi, N., Azimmohseni, M., & Ghareh Mahmoodlu, M. (2021). Rainfall-runoff process modeling using time series transfer function. Environmental Erosion Research Journal, 11 (2), 111-128. [In Persian]
14.Jandaghi, N. (2022). Modeling of Monthly Groundwater Level Using Artificial Neural Network Model. 40th National Geosciences of Earth Sciences, Tehran, Iran. [In Persian]
15.Ghezelsofli, H., Jandaghi, N., Ghareh Mahmoodlu, M., Azimmohseni, M., & Seyedian, M. (2022). Modeling and forecasting of monthly runoff in the time domain (Case study: River basin Gharasou). Environmental Erosion Research Journal, 12 (3), 165-188. [In Persian]
16.Jandaghi, N. (2023). Study on the forward process in monthly rainfall modeling using Artificial Neural Network. 17th National Conference on Watershed Management Sciences and Engineering of Iran (Watershed Management & Sustainable Food Security), University of Jiroft, Iran. [In Persian]
17.Eslamiyan, S. S., Nasri, M., & Rahimi, N. (2009). Wet and dry periods and its effects on water resources changes in Buin plain watershed. Geography and Environmental Planning Journal, 20 (33), 75-90.
18.Amutha, R., & Porchelvan, P. (2011). Seasonal prediction of groundwater levels using ANFIS and Radial Basis Neural Network, International Journal of Geology. Earth and Environmental Sciences, 1 (1), 98-108.
19.Emamgholizadeh, S., Moslemi, Kh., & Karami, Gh. (2014). Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro- Fuzzy Inference System (ANFIS). Water Resources Management,
28 (15), 5433-5446.
20.
Lohani, A. K., &
Krishan, G. (2015). Application of Artificial Neural Network for Groundwater Level Simulation in Amritsar and Gurdaspur Districts of Punjab, India.
Journal of Earth Science and Climatic Change, 6 (4), 1-5.
21.Rashidi, S., Mohammadian, M., & Vagharfard, H. (2016). Predicting of Groundwater Level Fluctuation Using ANN and ANFIS in Lailakh plain. International Journal of Advanced Biotechnology and Research, 7 (3), 1078-1084.
22.Mohanasundaram, S., Balaji, N., & Suresh Kumar, G. (2017). Transfer function noise modelling of groundwater level fluctuation using threshold rainfall-based binary-weighted parameter estimation approach. Hydrological Sciences Journal, 62 (1), 36-49.
23.Willem, J.Z., Stefanie, A.R.B., Aris, L., & Wilbert, L.B. (2019). Automated Time Series Modeling for Piezometers in the National Database of the Netherlands. Groundwater, 57 (6), 834-843.
24.Salem, A. (2021). Forecasting rainfall in Saudi Arabia via transfer function models. Journal of Research in Environmental and Earth Sciences, 7 (1), 6-11.
25.Heshmatpour, A., Jandaghi, N., Pasand, S., & Ghareh Mahmoodlu, M. (2020). Drought effects on surface water quality in Golestan province for Irrigation Purposes, Case study: Gorganroud River, Physical Geography Quarterly. 13 (48), 75-88. [In Persian]
26.Wunsch, A., Liesch, T., & Broda, S. (2020). Groundwater level forecasting with Artificial Neural Networks: A comparison of LSTM, CNN and NARX. Hydrology and Earth System Sciences. 552, 1-11.
27.Khan, M. Z., & Khan, M. F. (2019). Application of ANFIS, ANN and fuzzy time series models to CO2 emission from the energy sector and global temperature increase. International Journal of Climate Change Strategies and Management. 11 (5), 622-642.
28.Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European journal of operational research, 160 (2), 501-514.
29.Lohani, A.K., Kumar, R., & Singh, R. D. (2012). Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology, 1-13.
30.Wang, L. X., & Mendel, J. M. (1992). Generating fuzzy rules by learning from examples. IEEE Transactions on systems, man, and cybernetics, 22 (6), 1414-1427.
31.Crayer, J. (1986). Time series analysis. PWP Publication, Boston. 286 p.
32.Bowerman, B. L., & O’Connel, R. (1993). Forecasting and time series: Anapplied approach, Third edition, mazon Publication, 722 p.