1.Zhou, X. Y., Shi, H. D., & Wang, X. R. (2014). Impact of climate change and human activities on vegetation coverage in the Mongolian Plateau, Arid Zone Res. 31, 604-610.
2.Gordo, O., & Sanz, J. J. (2009). Long-Term Temporal Changes of Plant Phenology in the Western Mediterranean. Glob. Change Biol. 15, 1930-1948. https://doi.org/ 10.1111/ j.1365-2486. 2009. 01851.x.
3.Jin, X., Zhang, Y., Schaepman, M., Clevers, J., & Su, Z. (2008). Impact of elevation and aspect on the spatial distribution of vegetation in the qilian mountain area with remote sensing data. In: XXIth ISPRS Congress, Beijing, 3 July 2008 - 11 July 2008. International Society for Photogrammetry and Remote Sensing, 1385-1390. https://doi.org/10. 5167/uzh-77426.
4.Suding, K. N., Farrer, E. C., King, A. J., Kueppers, L., & Spasojevic, M. J. (2015). Vegetation change at high elevation: Scale dependence and interactive effects on niwot ridge, Plant Ecol. Divers.8, 713-725.
5.Taloor, A. K., Singh Manhas, S. D., & Kothyari, C. G. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Appl. Comput. Geosci.
9, 100051. doi:10.1016/j.acags.2020. 100051.
6.Sharma, S., Zhang, M., Anshika, Gao,J. G., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment.728, 867-878. doi:10.1016/j.scitotenv. 2020.138878.
7.Alam, A., Bhat, S., Kotlia, B. S. Ahmad, B., Ahmad, S., Taloor, A. K., & Farooq Ahmad, H. (2018). Hybrid tectonic character of the Kashmir basin: response to comment on “Coexistent pre-existing extensional and subsequent compressional tectonic deformation in the Kashmir basin Hybrid tectonic character of the Kashmir basin: response to comment on”Coex, Quaternary International. 468, 284-289. doi:10.1016 /j.quaint.2018.02.010.
8.Kannaujiya, S., Gautam, P. K., Chauhan, P., Roy, P. N. S., Pal, S. K., & Taloor,A. K. (2021). Contribution of seasonal hydrological loading in the variation of seismicity and geodetic deformation in Garhwal region of Northwest Himalaya. Quaternary International, 575, 62-71.
9.Kothyari, G. C., Joshi, N., Taloor, A. K., Kandregula, R. S., Kotlia, B. S., Pant,C. C., & Singh, R. K. (2019). Landscape evolution and deduction of surface deformation in the Soan Dun, NW Himalaya, India. Quaternary International, 507, 302-323.
10.Sarkar,T., Kannaujiya, S., Taloor, A. K., Champati Ray, P. K., & Chauhan, P. 2020a. Integrated study of GRACE data derived interannual groundwater storage variability over water stressed Indian regions. Groundw. Sustain. Dev. 10, 364-376. doi:10.1016/j.gsd.2020. 100376.
11.Couteron, P., Hunke, P., Bellot, J., Estrany, J., Martínez-Carreras, N., Mueller, E. N., Papanastasis, V. P., Parmenter, R. R., & Wainwright, J. (2014). characterizing patterns, In Patterns of Land Degradation in Drylands, Springer, New York, NY, USA, 211-245.
12.Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C. M., Arain, M. A., Bohrer, G., Lafleur, P. M., Peichl, M., Gonsamo, A., Xu, S., Fang, B., & Ge, Q. (2017). Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites,Agr. Forest Meteorol. 233, 171-182.
13.Alademomi, A. S., Okolie, C. J., Daramola, O. E., Agboola, R. O., & Salami, T. J. (2020). Assessing the Relationship of LST, NDVI and EVI with Land Cover Changes in the Lagos Lagoon Environment. Quaest. Geogr.39 (3), 87-109. doi:10.2478/quageo-2020-0025.
14.Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors. 7 (11), 2636-2651. doi:10.3390/s7112636.
15.Hinojo-Hinojo, C., & Goulden, M. L. (2020). Plant Traits Help Explain the Tight Relationship between Vegetation Indices and Gross Primary Production. Remote Sens. 12 (9), 1391-1405.
16.Restrepo-Coupe, N., Huete, A., Davies, K., Cleverly, J., Beringer, J., Eamus, D., van Gorsel, E., Hutley, L. B., & Meyer, W. S. (2016). MODIS Vegetation Products as Proxies of Photosynthetic Potential along a Gradient of Meteorologically and Biologically Driven Ecosystem Productivity. Biogeosciences, 13, 5587-5608.
17.Cavalaris, C., Megoudi, S., Maxouri, M., Anatolitis, K., Sifakis, M., Levizou, E., & Kyparissis, A. (2021). Modeling of Durum Wheat Yield Based on Sentinel-2 Imagery. Agronomy, 11 (8), 1473-1486.
18.Lanfredi, M., Coppola, R., Simoniello, T., Coluzzi, R., Imbrenda, V., & Macchiato, M. (2015). Early identification of land degradation hotspots in complex bio-geographic regions. Remote Sensing,7 (6), 8154-8179.
19.Shewangzaw, M. (2014). Vegetation dynamics analysis using normalized differences vegetation index as indicator of restoration or degradation, south wollo zone, northern Ethiopia. ADDIS ABABA University, p: 71.
20.Kyparissis, A., & Levizou, E. (2022) Climatic Drivers of the Complex Phenology of the Mediterranean Semi-Deciduous Shrub Phlomis fruticosa Based on Satellite-Derived EVI.Plants, 11 (5), 571-584. https:// doi.org/ 10.3390/plants11050584.
22.Lu, D., Mausel, P., Brondızio, E., & Moran, E. (2004). Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest ecology and management, 198 (1), 149-167.
23.Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International journal of remote sensing, 10 (6), 989-1003.
24.Wessels, K. J., Van Den Bergh, F., & Scholes, R. J. (2012). Limits to detectability of land degradation by trend analysis of vegetation index data. Remote sensing of Environment, 125, 10-22.
25.Gholampoor, M., Khosroshahi, M., & Barkhordari, J. (2009). Determination of desert domains of Hormozgan province using geomor phological criteria.15 (4), 485-492. [In Persian]
26.Najafi Shabankareh, K., Khosroshahi, M., & Gholampoor, M. (2008). Determination of the geographical domain of Hormozgan province desert area in vegetation view. Iranian journal of Range and Desert Research. 15 (1), 97-113.
27.Zhe, M., & Zhang, X. (2021). Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecol. Indic. 124, 420-431. doi:10.1016/ j. ecolind.2021.107431.
28.Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 104 (2), 133-146. doi:10.1016/ j.rse.2005.11.016.
29.Gan, R., Zhang, Y. Q., Shi, H., Yang, Y. T., Eamus, D., Cheng, L., Chiew, F. H. S., & Yu, Q. (2018). Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems.
Ecohydrology,
doi:10.1002/eco.1974.
30.Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., & Yang, Y. (2019). Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote Sens. Environ. 222, 165-182.
31.McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., Funk, C., Peters-Lidard, C. D., & Verdin, J. P. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4 (12), 1-19. DOI: 10.1038/sdata.2017.12.
32.Ranjbar, A., Valia, A., Mokarramb, M., & Taripanahc, F. (2020). Analyzing of the spatio-temporal changes of vegetation and its response to environmental factors in north of Fars province, Iran. Iranian Journal of Remote Sensing & GIS. 11 (4), 61-82. doi: 10.52547/gisj.11.4.61. [In Persian]
33.Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetaryscale geospatial analysis for everyone. Remote Sens Environ.202, 18-27.
34.Mirabbasi, R., Anagnostou, E. N., Fakheri-Fard, A., Dinpashoh, Y., & Eslamian, S. (2013). Analysis of meteorological drought in northwest Iran using the joint deficit index. Journal of Hydrology, 492, 35-48. [in Persian]
35.Bazrafshan, J., Hejabi, S., & Rahimi, J. (2014). Drought monitoring using the multivariate standardized precipitation index (MSPI). Water Resour. Manage. 28 (4), 1045-1060.
36.Raziei, T., Bordi, I., & Pereira, L. S. (2011). An application of GPCC and NCEP/NCAR datasets for drought variability analysis in Iran. Water Resour. Manage. 25 (4), 1075-1086.
37.Wilks, D. S. (2011). Statistical methods in the atmospheric sciences, 3rd Ed., Academic, London.
38.Eskandari Damaneh, H., Sayadi, Z., & Khoorani, A. (2021). Evaluation of spatiotemporal changes and correclations of aerosol optical depth, NDVI and climatic data over Iran. 28 (4), 772-786. doi:10.22092/ ijrdr. 2021.125252.
39.Mirahsani, M. S., Salman Mahiny, A., Soffianian, A., Mohamadi, J., Modarres, R., Modares, R., & Pourmanafi, S. (2019). Evaluation of Trend in Vegetation Variations using Time Series Images and Mann-Kendall test over Gavkhuni Basin. Journal of Environmental Studies, 45 (1), 99-114. doi: 10.22059/jes.2019.260567.1007699.
40.Nohegar, A., Heydarzadeh, M., Eydoon, M., & Pannahi, M. (2016). Assessment of drought and its impact on surface and groundwater resources (Case study: River basin Minab). Researches in Earth Sciences. 7 (3), 28-43. [In Persian]
41.Muradyan, V., Tepanosyan, G., Asmaryan, S., Saghatelyan, A., & Dell’Acqua, F. (2019). Relationships between NDVI and climatic factors in mountain ecosystems: a case study of Armenia. Remote Sens. Appl. Soc. Environ. 14, 158-169. doi: 10.1016/j. rsase.2019.03.004.
42.Stoddard, L. A., Smith, S. D., & Box, T. W. (1975). Range-condition Analysis. In Range Management; McGraw-Hill Book Co.: New York, NY, USA.
43.Eghdami, H., Azhdari, G., Lebailly, P., & Azadi, H. (2019). Impact of Land Use Changes on Soil and Vegetation Characteristics in Fereydan, Iran. Agriculture. 9, 58; doi: 10.3390/ agriculture9030058.
44.Hormozgan province land development strategic document. (2018). Management and Planning Organization of Hormozgan Province, p 32. [In Persian]
46.Abadeh, M., & Khosroshahi, M. (2021). Assessment and drought monitoring using Standardized Precipitation (SPI) and Standardized Precipitation Evapotranspiration (SPEI) Indices in Hormozgan province. Iranian journal of Range and Desert Research. 28 (4), 718-732. [In Persian]
47.Xu, X.K., Chen, H., & Zhang, F. (2007). Temporal and spatial change of vegetation cover in the Northwest of China and factors analysis influencing on vegetations variation, Environmental Science, 28 (1), 41-47.
48.Yang, G. H., Bao, A. M., Chen, X., Liu, H. L., Huang, Y., & Dai, S. Y. (2009). Study of the vegetation cover change and its driving factors over Xinjiang during 1998-2007, Journal of Glaciology and Geocryology, 31 (3), 436-445.
49.Naderi, M., Sheikh, V., Komaki, C. B., Bahrehmand, A., Ghanghermeh, A.A., & Siroosi, H. (2022). Detection and Prediction of Land Use Changes Using Modeling Approach within a GIS Environment (Case Study: Hablehroud Watershed). Journal of Water and Soil Conservation, 29 (2), 113-134. (In Persian)
50.Entezari, A., Zandi, R., & Khosravian, M. (2019). 'Evaluation of spatial variations of vegetation and surface temperature using Landsat and midsize images, case study: Fars Province, 1967-2017', Watershed Engineering and Management, 11 (4), 929-940. doi: 10.22092/ijwmse.2018.122914.1528.
51.Ferreira, S. L., & Duarte, D. H. S. (2019). Exploring the relationship between urban form land surface temperature and vegetation indices in a subtropical megacity. Urban Climate. 27, 105-123.
52.Fathizad, H., Tazeh, M., Kalantari, S., & Shojaei, S. (2017). The investigation of spatiotemporal variations of Land Surface temperature based on land use changes using NDVI in southwest if Iran. Journal of African Earth Sciences. 134, 249-256.
53.Zhijia, G., Xingwu, D., Yandong, S., Ya, L., & Xi, P. (2018). Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China, Ecological Indicators, 93, 54-64.
54.Faramarzi, M., Heidarizadi, Z., Mohamadi, A., & Heydari, M. (2018). Detection of vegetation cover changes using normalized difference vegetation index in semi-arid rangeland in western Iran. Journal of Agricultural Science and Technology. 20, 51-60. [In Persian]
55.Agam, N., Kustas, W. P., Anderson, M.C., Li, F., & Neale, C. M. U. (2007). A vegetation index-based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 107 (4), 545-558. doi: 10.1016/j.rse.2006.10.006.
56.Mukherjee, S., Joshi, P. K., & Garg, R. D. (2015). Evaluation of LST downscaling algorithms on seasonal thermal data in humid subtropical regions of India. Int. J. Remote Sens. 36 (10), 2503-2523. doi:10.1080/ 01431161.2015.1041175.