1.Schaap, M.G., and Leij, F.J. 1998. Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research. 47: 1-2. 37-42.
2.Nemes, A., and Rawls, W.J. 2006. Evaluation of different representations of the particle-size distribution to predict soil water retention. Geoderma. 132: 1-2. 47-58.
3.Tomasella, J., Pachepsky, Y., Crestana, S., and Rawls, W.J. 2003. Comparison of two techniques to develope pedotransfer functions for water retention. Soil Science Society of American Journal, 67: 4. 1085-1092.
4.Bayat, H., Neyshabouri, M., Mohammadi, K., Nariman-Zadeh, N., Irannejad, M., and Gregory, A.S. 2013. Combination of artificial neural networks and fractal theory to predict soil water retention curve. Computers and Electronics in Agriculture. 92: 92-103.
5.Twarakavia, N.K.C., Simunek, J., and Schaap, M.G. 2009. Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Science Society of American Journal. 73: 5. 1443-1452.
6.Babaeian, E., Homaee, M., and Norouzi, A.A. 2014. Evaluating point and parametric spectral transfer functions for a prediction of soil water characteristics. Iranian Journal of Soil and Water Research. 45: 4. 475-490. (In Persian)
7.Mehrabi Gohri, A., Sarmidian, F., and Taghizadeh Mehrjardi, R. 2013. Prediction of the amount of water at Field Capacity and Permananent Wilting Point using Artificial Neural Network and Multivariate Regression. J. of Irrigation and water engineering. 3: 10. 42-52. (In Persian)
8.Amir Abedi, H., Asghari, S., Mesri Gandoshmin, T., and Keivan Behjo, F. 2013. Estimating of field capacity, permanent wilting and available water content in Ardabil plain soils using regression and artificial neural network models. Applied Soil Research. 1: 1. 60-72. (In Persian)
9.Norouzi Engnaee, O., Khalafi, M., and Karimi Soorvand, M. 2019. Investigating the performance of data-based methods in estimating important moisture points in Shahrood area. Journal of Irrigation Sciences and Engineering. 42: 4. 29-44. (In Persian)
10.Lieb, M., Glaser, B., and Huwe, B. 2012. Uncertainty in the spatial prediction of soil texture comparison of regression tree and random forest models. Groderma. 170: 70-79.
11.McBratney, A.B., Minasny, B., and Tranter, G. 2011. Necessary meta-data for pedotransfer functions. Geoderma. 160: 3-4. 627-629.
12.Rastgou, M., Bayat, H., Mansoorizadeh, M., and Gregory, Andrew S. 2020. Estimating the soil water retention curve: Comparison of multiple nonlinear regression approach and random forest data mining technique. Computers and Electronics in Agriculture. 174: 1-13.
13.Cueff, S., Coquet, Y.B., Aubertot, J.N., Bel, L., Pot, V., and Alletto, L. 2021. Estimation of soil water retention in conservation agriculture using published and new pedotransfer functions. Soil and Tillage Research. 209: 104967.
14.Abdelhafid, Y., Chebbah, M., and Rechachi, M.Z. 2021. Comparison of regression methods for predicting soil water contents at field capacity and wilting point in Bas Sahara of Algeria. International Journal of Forest, Soil and Erosion. 11: 2. 45-62.
15.Fritsch, S., Guenther, F., and Wright, M.N. 2019. neuralnet: Training of Neural Networks. URL https:// CRAN. R-project.org/ package = neuralnet. R package version 1.44.2.
16.Quinlan, J.R. 1992. Learning with continuous classes. P 343-348, In: Proceedings of 5th Australian conference on artificial intelligence. World Scientific. Singapore.
17.
Zhou, Zhi-Hua. 2012. Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC. 23p.
18.Kuhn, M., Weston, S., Keefer, C., Coulter, N., and Quinlan, R. 2023. Cubist: Rule-and Instance-based Regression Modeling, R package version 0.4.2.1. (
https://cran.r-project.org/web/ packages/Cubist/Cubist.pdf. Last access date: 3 May 2023).
19.Breiman, L. 2001. Random forests. Machine Learning. 45: 1. 5-32.
20.Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., and Hunt, T. 2023. caret: Classification and Regression Training. R package version 6.0-94. (
https:// cran.r-project.org/web/packages/ caret/ caret.pdf. Las access date: 3 May 2023).
21.Chang, C.C., and Lin, C.J. 2001. Libsvm: A library for support vector machines. ACM transactions on intelligent systems and technology (TIST) 2: 3. 1-27.
22.Cortes, C., and Vapnik, V. 1995. Support-vector networks. Machine Learning. 20: 3. 273-297.
23.Brus, D., Kempen, B., and Heuvelink, G. 2011. Sampling for validation of digital soil maps. European Journal of Soil Science. 62: 3. 394-407.
24.Manyam, C., Morgan, C.L., Heilman, J.L., Fatondji, D., Gerard, B., and Payne, W.A. 2007. Modeling hydraulic properties of sandy soils of Niger using pedotransfer functions. Geoderma. 141: 3-4. 407-415.
25.Gomes, F.P., and Garcia, C.H. 2002. Estatrstica Aplicada an Experimentos Agronomicos e Florestais. FEALQ: Piracicaba, 309p. (In Portuguese)
26.Botula, Y.D., Cornelis, W.M., Baert, G., and Van Ranst, E. 2012. Evaluation of pedotransferfunctions for predicting water retention of soils in Lower Congo (D.R. Congo). Agriculture Water Management, 111: 1-10.
27.Minh Nguyen, P., Van Le, Kh., Dady Botula, Y., and M. Cornelis, W. 2015. Evaluation of soil water retention pedotransfer functions for Vietnamese Mekong Delta soils.
Agricultural Water Management. 158: 126-138.
28.Hutson, J.L., and Cass, A. 1987. A retentivity function for use in soil-water simulation models. Journal of Soil Science. 38: 1. 105-113.
29.Merdun, H., Cinar, O., Meral, R., and Apan, M. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research. 90: 1-2. 108-116.
30.Mosaddeghi, M.R., and Mahboubi, A.A. 2011. Point pedotransfer functions for prediction of water retention of selected soil series in a semi-arid region of western Iran. Archives of Agronomy and Soil Science. 57: 4. 327-342.
31.Salchow, E., Lal, R., Fausey, N.R., and Ward, A. 1996. Pedotransfer functions for variable alluvial soils in Southern Ohio. Geoderma. 73: 3-4. 165-181.
32.Minasny, B., and McBratney, A. B. 2002. The Neuro-m Method for Fitting Neural Network Parametric Pedotransfer Functions. Soil Science Society American Journal. 66: 2. 352-361.
33.Medeiros, J.C., Cooper, M., Dalla Rosa, J., Grimaldi, M., and Coquet, Y.M. 2014. Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region. Rev. Bras. Cien. Solo. 38: 3. 730-743.