1.Varjani, S.J. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223: 277-286.
2.Naeem, U., and Qazi, M.A. 2020. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environmental Science and Pollution Research. 27: 22. 27370-27382.
3.Hussain, I., Puschenreiter, M., Gerhard, S., Schöftner, P., Yousaf, S., Wang, A., Syed, J.H., and Reichenauer, T.G. 2018. Rhizoremediation of petroleum hydrocarbon- contaminated soils: improvement opportunities and field applications. Environ. Exp. Bot. 147: 202-219.
4.O’Brien, P.L., DeSutter, T.M., Casey, F.X., Wick, A.F., and Khan, E. 2017. Evaluation of soil function following remediation of petroleum hydrocarbons-a review of current remediation techniques. Current Pollution Reports. 3: 3. 192-205.
5.Kluk, D., and Steliga, T. 2016. Evaluation of toxicity changes in soil contaminated with nickel and petroleum-derived substances in phytoremediation processes. Nafta-Gaz. 4: 230-241.
6.Mench, M., Lepp, N., Bert, V., Schwitzguébel, J.P., Gawronski, S.W., Schröder, P., and Vangronsveld, J. 2010. Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10: 6. 1039-1070.
7.Martins, C.D.C., Liduino, V.S., Oliveira, F.J.S., and Sérvulo, E.F.C. 2014. Phytoremediation of soil multi-contaminated with hydrocarbons and heavy metals using sunflowers. Int. J. Eng. Tech. IJET-IJENS. 5:14. 1-6.
8.Xie, W., Zhang, Y., Li, R., Yang, H., Wu, T., Zhao, L., and Lu, Z. 2017. The responses of two native plant species to soil petroleum contamination in the Yellow River Delta. Environ. Sci. Poll. Res. 24: 31. 24438-24446.
9.Liu, R., Jadeja, RN., Zhou, Q., and Liu, Z. 2012. Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environmental Engineering Science. 29: 6. 494-501.
10.Bento, R.A., Saggin-Júnior, O.J., Pitard, R.M., Straliotto, R., da Silva, E.M.R., Tavares, S.R.D.L., and Volpon, A.G.T. 2012. Selection of leguminous trees associated with symbiont microorganisms for phytoremediation of petroleum-contaminated soil. Water, Air, and Soil Pollution. 223: 9. 5659-5671.
11.Hawrot-Paw, M., Ratomski, P., Mikiciuk, M., Staniewski, J.,Koniuszy, A., Ptak, P., and Golimowski, W. 2019. Pea cultivar Blauwschokker for the phytostimulation of biodiesel degradation in agricultural soil. Environ. Sci. Poll. Res. 26: 33. 34594-34602.
12.Borowik, A., Wyszkowska, J., Gałązka, A., and Kucharski, J. 2019. Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil. Environ. Sci. Poll. Res. 26: 27. 27738-27751.
13.Guo, M., Gong, Z., Miao, R., Jia, C., Rookes, J., Cahill, D., and Zhuang, J. 2018. Enhanced polycyclic aromatic hydrocarbons degradation in rhizosphere soil planted with tall fescue: bacterial community and functional gene expression mechanisms. Chemosphere 212: 15-23.
14.Lee, Y.Y., Seo, Y., Ha, M., Lee, J., Yang, H., and Cho, K.S. 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environmental Research. 194: 110606.
15.Wei, Y., Wang, Y., Duan M., Han, J., and Li, G. 2019. Growth tolerance and remediation potential of six plants in
oil-polluted soil. J. Soils Sediments. 19: 3773-3785.
16.Shan, B.Q., Zhang, Y.T., Cao, Q.L., Kang, Z.Y., and Li, S.Y. 2014. Growth responses of six leguminous plants adaptable in Northern Shaanxi to petroleum contaminated soil. Huan jing ke xue = Huanjing kexue. 35: 3. 1125-1130.
17.Khashij, S., Karimi, B., and Makhdoumi, P. 2018. Phytoremediation with Festuca arundinacea: a mini review. International Journal of Health and Life Sciences. 4: 2. e86625.
18.Ganjegunte, G., Ulery, A., Niu, G., and Wu, Y. 2018. Treated urban wastewater irrigation effects on bioenergy sorghum biomass, quality, and soil salinity in an arid environment. L. Degrad. Dev. 29: 3. 534-542.
19.Bremner, J.M. 1982. Total nitrogen. Methods of soil analysis. Am. Soc. Agron. Mongrn. 10: 2. 594-624.
20.Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
21.Richards, L.A. (Ed.). 2012. Diagnosis and improvement of saline and alkali soils. Scientific Publishers.
22.Robertson, G.P., Coleman, D.C., Sollins, P., and Bledsoe, C.S. (Eds.). 1999. Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand.
23.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science. 37: 1. 29-38.
24.Ayers, R.S., and Westcot, D.W. 1985. Water quality for agriculture. FAO Irrigation and Drainage Paper 29. Rev. 1. FAO, Rome.
25.Alizadeh, A. 2018. Soil, water, plant relationship. Emam Reza University Publication, Mashhad, Iran. 470p. (In Persian)
26.Anyasi, R.O., and Atagana, H.I. 2018. Profiling of plants at petroleum contaminated site for phytoremediation. International journal of phytoremediation. 20: 4. 352-361.
27.Adeniji, A.O., Okoh, O.O., and Okoh, A.I. 2017. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review. Journal of Chemistry. 2017: 1-14.
28.Matthew, M. 2009. A comparison study of gravimetric and ultraviolet fluorescence methods for the analysis of total petroleum hydro-carbons in surface water. (Doctoral dissertation, Northeastern University).
29.Ololade, I., Lajide, L., and Amoo, I. 2009. Spatial trends of petroleum hydrocarbons in water and sediments. Open Chemistry. 7: 1. 83-89.
30.Kamath, R., Rentz, J.A., Schnoor, J.L., and Alvarez, P.J.J. 2004. Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Studies in surface science and catalysis. 151: 447-478.
31.Asghar, H.N., Rafique, H.M., Zahir, Z.A., Khan, M.Y., Akhtar, M.J., Naveed, M., and Saleem, M. 2016. Petroleum hydrocarbons-contaminated soils: remediation approaches. Soil science: agricultural and environmental prospective. Springer. Cham. pp. 105-129.
32.Steliga, T., and Kluk, D. 2020. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicology and Environmental Safety. 194: 110409.
33.Lorestni, B., Noori, R., and Kolahchi, N. 2016. Bioremediation of soil contaminated with light crude oil using Fabaceae family. Journal of Environmental Science and Technology. 18: 2. 101-108. (In Persian)
34.Jiang, M., Liu, S., Li, Y., Li, X., Luo, Z., Song, H., and Chen, Q. 2019. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicology and Environmental Safety. 170: 502-512.
35.Liu, W., Hou, J., Wang, Q., Yang, H., Luo, Y., and Christie, P. 2015. Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant and Soil. 389: 1. 109-119.
36.Jamrah, A., Al-Futaisi, A., Hassan, H. and Al-Oraimi, S. 2007. Petroleum contaminated soil in Oman: Evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete. Environmental monitoring and assessment. 124: 1. 331-341
37.Huang, L., Chen, D., Zhang, H., Song, Y., Chen, H., and Tang, M. 2019. Funneliformis mosseae enhances root development and Pb phytostabilization in Robinia pseudoacacia in Pb-contaminated soil. Frontiers in Microbiology. 2591.
38.Mendoza, R.E. 1998. Hydrocarbon leaching, microbial population, and plant growth in soil amended with petroleum. Bioremediation Journal. 1: 3. 223-231.
39.Shahriari, M., Savaghebi Firouzabadi, G., Minaei Tehrani, D., and Padidaran, M. 2006. The effect of mixed plants alfalfa (Medicago Sativa) and fescue (Festuca Arundinacea) on the phytoremediation of light crude oil in soil. Environmental sciences. 4: 13. 33-40. (In Persian)
40.Haritash, A.K., and Kaushik, C.P. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of hazardous materials. 169: 1-3. 1-15.
41.Kayikcioglu, H.H. 2012. Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions. Journal of environmental management. 102: 108-114.
42.Ahmad, A. 2021. Phytoremediation of heavy metals and total petroleum hydrocarbon and nutrients enhancement of Typha latifolia in petroleum secondary effluent for biomass growth. Environmental Science and Pollution Research. pp. 1-10.
43.Ahmad, A., Sreedhar Reddy, S., and Rumana, G. 2019. Model for bioavailability and metal reduction from soil amended with petroleum wastewater by rye-grass L. International journal of phytoremediation. 21: 5. 471-478.
44.Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., and Ramsden, J.J. 2006. Biochemical mechanisms of detoxification in higher plants: basis of phytoremediation. Springer Science & Business Media.
45.Prematuri, R., Mardatin, N.F., Irdiastuti, R., Turjaman, M., Wagatsuma, T. and Tawaraya, K. 2020. Petroleum hydrocarbons degradation in contaminated soil using the plants of the Aster family. Environmental Science and Pollution Research. 27: 4. 4460-4467.
46.Lim, M.W., Von Lau, E., and Poh, P.E. 2016. A comprehensive guide of remediation technologies for oil contaminated soil-Present works and future directions. Marine pollution bulletin. 109: 1. 14-45.
47.Van Hecke, M.M., Treonis, A.M., and Kaufman, J.R. 2005. How does the fungal endophyte Neotyphodium coenophialum affect tall fescue (Festuca arundinacea) rhizodeposition and soil microorganisms?. Plant and soil. 275: 1. 101-109.
48.Zhang, X., Wang, Z., Liu, X., Hu, X., Liang, X., and Hu, Y. 2013. Degradation of diesel pollutants in Huangpu-Yangtze River estuary wetland using plant-microbe systems. International Biodeterioration and Biodegradation. 76: 71-75.
49.Newman, L.A., and Reynolds, C.M. 2004. Phytodegradation of organic compounds. Current opinion in Biotechnology. 15: 3. 225-230.
50.Mougin, C. 2002. Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyclic Aromatic Compounds, 22: 5. 1011-1043.
51.Eze, M.O., and George, S.C. 2020. Ethanol-blended petroleum fuels: implications of co-solvency for phytotechnologies. RSC Advances, 10: 11. 6473-6481.
52.Merkl, N., Schultze-Kraft, R., and Arias, M. 2005. Influence of fertilizer levels on phytoremediation of crude oil-contaminated soils with the tropical pasture grass Brachiaria brizantha (Hochst. ex a. rich.) stapf. International Journal of Phytoremediation. 7: 3. 217-230.
53.McIntosh, P., Schulthess, C.P., Kuzovkina, Y.A., and Guillard, K. 2017. Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. International journal of phytoremediation, 19: 8. 755-764.
54.Keller, J., Banks, M.K., and Schwab. A.P. 2008. Effect of soil depth on phytoremediation efficiency for petroleum contaminants. J. Environ. Sci. Health. Part A, Toxic/Hazard Subst. Environ. Eng. 43: 1. 1-9.
55.Hutchinson, S.L., Schwab, A.P., and Banks, M.K. 2001. Phytoremediation of aged petroleum sludge: effect of irrigation techniques and scheduling. Journal of environmental quality. 30: 5. 1516-1522.
56.Hou, F.S.L., Milke, M.W., Leung, D.W.M., and MacPherson, D.J. 2001. Variations in phytoremediation performance with diesel-contaminated soil. Environmental technology. 22: 2. 215-222.
57.Van Epps, A. 2006. Phytoremediation of petroleum hydrocarbons. Environmental Protection Agency, US.
58.Lee, S.L., Hagwall, M., Delfino, J.J., and Rao, P.S.C. 1992. Partitioning of polycyclic aromatic hydrocarbons from diesel fuel into water. Environmental Science and Technology. 26: 2104-2110.