1.Savenije, H.H.G. 2010. HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrology and Earth System Sciences, 14: 2681-2692, doi:10.5194/hess-14-2681-2010.
2.Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H.H.G. 2011. Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrology and Earth System Sciences, 15: 3275-3291, doi:10.5194/hess-15-3275-2011.
3.Bahremand, A., and Kornejady, A. 2015. Introduction and preparation of the new topo–hydrological index: height Above the Nearest Drainage, in the Ziarat watershed. Water Engineering Conference and Exhibition, Iran. 9p. (In Persian)
4.Nobre, A., Cuartas, L., Hodnett, M., Rennó, C., Rodrigues, G., Silveira, A., Waterloo, M., and Saleska, S. 2011. Height above the nearest drainage – a hydrologically relevant new terrain model, Journal of Hydrology, 404: 13-29.
5.Hosseinalizadeh, M., Kariminejad, N., Campetella, G., Jalalifard, A., and Alinejad, M. 2018. Spatial point pattern analysis of piping erosion in loess-derived soils in Golestan Province, Iran. Geoderma, 328: 20-29.
6.Hosseinalizadeh, M., Alinejad M.,Zarei, H., and Jalalifard, A. 2019.Piping Erosion, a Threat or an Opportunity? Journal of Land Management. 7: 2. 165-177. doi: 10.22092/lmj.2019.120553.
7.Verachtert, E., Maetens, W., Van Den Eeckhaut, M., Poesen, J., and Deckers, J. 2011. Soil loss rates due to piping erosion. Earth Surface Processes and Landforms, 36: 13. 1715-1725.
8.Bernatek-Jakiel, A., Kacprzak, A., and Stolarczyk, M. 2016. Impact of soil characteristics on piping activity in a mountainous area under a temperate climate (Bieszczady Mts., Eastern Carpathians). Catena, 141: 117-129.
9.Kariminejad, N., Hosseinalizadeh, M., Pourghasemi, H.R., Bernatek‐Jakiel, A., and Alinejad, M. 2019. GIS‐based susceptibility assessment of the occurrence of gully headcuts andpipe collapses in a semi‐arid environment: Golestan Province, NE IranLand Degradation & Development,30: 18. 2211-2225.
10.Zhu, T.X. 2003. Tunnel development over a 12-year period in a semi‐arid catchment of the Loess Plateau, China. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group,28: 5. 507-525.
11.Kariminejad, N., Hosseinalizadeh, M., Pourghasemi, H.R., and Tiefenbacher, J.P. 2021. Change detection in piping, gully head forms, and mechanisms.
Catena 206, 105550.
https://doi.org/ 10.1016/ j.catena.2021.105550.
12.Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije H.H.G. 2014. Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the upper Heihe, China. Hydrology and Earth System Sciences, 18: 1895-1915.
13.Fenicia, F., Savenije, H.H.G., Matgen, P., and Pfister, L. 2008. Understanding catchment behavior through stepwise model concept improvement, Water Resources Research, 44, W01402, doi:10.1029/2006wr005563.
14.Zhao, R.J. 1992. The xinanjiang model applied in china, Journal of Hydrology, 135: 371-381, doi:10.1016/0022-1694 (92)90096-E.
15.Savenije, H.H.G. 1997. Determination of evaporation from a catchment water balance at a monthly time scale, Hydrology and Earth System Sciences, 1: 93-100, doi:10.5194/hess-1-93-1997.