1.Batalla, R.J. 1997. Evaluating bed-material transport equations from field measurements in a sandy gravel-bed river. Earth Surf. Process, Land. 21: 121-130.
2.Martin, Y., and Ham, D. 2005. Testing bed load transport formulae using morphologic transport estimates and
field data: lower Fraser River, British Columbia. Earth Surf. Process. Landf.30: 1265-1282.
3.Gomez, B., and Church, M. 1989. An assessment of bed load sediment transport formulae forgravel bed rivers. Water Resour. 25: 6. 1161-1186.
4.Haddadchi, A., Omid, M.H., and Dehghani, A.A. 2011. Assessment of bedload predictors based on bampling
in a gravel bed river. Journal of Hydrodynamic. 24: 1. 145-151.
5.Sasal, M., Kashyap, S., Rennie, C.D.,and Nistor, I. 2009. Artificial neural network for bedload estimation in alluvial rivers. Journal of Hydraulic Research.47: 2. 223-232.
6.Yang, C.T., Marsooli, R., and Aalami, M.T. 2009. Evaluation of total load sediment transport formulas using ANN. International Journal of Sediment Research. 24: 3. 274-286.
7.Kitsikoudis, V., Sidiropoulos, E., and Hrissanthou, V. 2014. Machine learning utilization for bed load transport in gravel-bed rivers. Water Resources Management. 28: 11. 3727-3743.
8.Mosfaei, J., Salehpour Jam, A., and Tabatabai, M.R. 2017. Comparison of the efficiency of sediment rating curves model and artificial neural network in the study of river bed load. Geography and environmental sustainability. 24: 7. 33-44. (In Persian)
9.Zaytar, M.A., and El Amrani, C. 2016. Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. International Journal of Computer Applications. 143: 11. 7-11.
10.Baroni, A., and Ziarati, K. 2019. Modeling of minimum temperature in Fars province using LSTM recurrent neural network model. 4th International Congress of Developing Agriculture, Natural Resources, Environmentand Tourism of Iran, Tehran, Iran.(In Persian)
11.
Kaveh, K., Kaveh, H., Duc Bui, M., and Rutschmann, P. 2021. Long short‑term memory for predicting daily suspended sediment Concentration.
Engineering with Computers. 37: 1. 2013-2027.
12.AlDahoul, N., Essam, Y., Kumar, P., Ahmed, A.N., Sherif, M., Sefelnasr, A., and Elshafie, A. 2021. Suspended sediment load prediction using long short‑term memory neural network. Scientific Reports. 11: 7826.
13.King, J.G., Emmett, W.W., Whiting, P.J., Kenworthy, R.P., and Barry, J.J. 2004. Sediment transport Data and Related Information for Selected Coarse-Bed Streams and Rivers in Idaho, Gen. Tech. Rep. RMRS-GTR-131. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 26p.
14.Meyer-Peter, E., and Müller, R. 1948. Formulas for bed-load transport. In Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research. pp. 39-64.
15.Schoklitsch, A. 1950. Handbuch des wasserbaues. Springer, New York, 478p.
16.Brown, C.B. 1950. Sediment transportation. Engineering hydraulic, edited by H. Rouse, John Wiley,New York. pp. 769-857.
17.Rottner, J. 1959. A formula for bedload transportation. La Houille Blanche. 3: 4. 301-307.
18.Bagnold, R.A. 1980. An empirical correlation of bed load transport rates in flumes and natural rivers. Proc. Roy. Soc. Lond. Ser. A. 372: 453-473.
19.Parker, G., Klingeman, P.C., and McLean, D.G. 1982. Bedload and the size distribution of paved gravel-bed streams. Journal of the Hydraulics Division. 108: 4. 544-571.
20.VanRijn, L.C. 1984a. Sediment transport, Part I: Bedload transport. Journal of Hydraulic Engineering.110: 10. 1431-1456.
21.Wilcock, P.R., and Crowe, J.C. 2003. Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering. 129: 2. 120-128.
22.Wong, M., and Parker, G. 2006. Reanalysis and correction of bed-load relation of Meyer- Peter and Müller using their own database. Journal of Hydraulic Engineering. 132: 11. 1159-1168.
23.Bhattacharya, B., Price, R.K., and Solomatine, D.P. 2007. Machine learning approach to modeling sediment transport. Journal of Hydraulic Engineering. 133: 4. 440-450.
24.Igor Aizenberg, Naum N., Aizenberg, Joos P.L., Vandewalle. 2000. Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer Science and Business Media, New York, 276p.
25.Graves, A., and Schmidhuber, J. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks. 12: 5-6.
26.Bengio, Y., Simard, P., and Frasconi, P. 1994. Learning long-term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks. 5: 2. 157-166.
27.Gers, F.A., Schmidhuber, J., and Cummins, F. 2000. Learning to forget: Continual prediction with LSTM. Neural Computation. 12: 10. 2451-2471.
28.Legates, D.R., and McCabe, G.J. 1999. Evaluating the Use of “Goodness-of-Fit” Measures in Hydrologic and Hydroclimatic Model Validation.Water Resources Research. 35: 233-241.
29.López, R., Vericat, D., and Batalla, R.J. 2013. Evaluation of bed load transport formulae in a large regulated gravel bed river: the lower Ebro (NE Iberian Peninsula). Journal of Hydrology.510: 164–181.