1.Adeline, K.R.M., Gomez, C., Gorretta, N., and Roger, J.M. 2017. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma. 288: 143-153.
2.Askari, M.S., Cui, J., O’Rourke, S.M., and Holden, N.M. 2015. Evaluation of soil structural quality using VIS–NIR spectra. Soil and Tillage Research.146: 108-117.
3.Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M., and McBratney, A. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy, Trends Anal. Chem. 29: 9. 1073-1081.
4.Camargo, O.A., Moniz, A.C., Jorge, J.A., and Valadares, J.M. 2009. Methods of Chemical, Mineralogical and Physical Analysis of Soils Used in the Pedology Section (Technical Bulletin n.106), Instituto Agronômico (IAC), Campinas. 77p.
5.Casa, R., Castaldi, F., Pascucci, S., Palombo, A., and Pignatti, S. 2013. A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma. 197: 17-26.
6.Chabrillat, S., Ben-Dor, E., Rossel, R.A.V., and Demattê, J.A.M. 2013. Quantitative soil spectroscopy. Appl. Environ. Soil Sci. 3: 1-3.
7.Chang, C.W., and Laird, D.A. 2002. Near-infrared reflectance spectroscopy analysis of soil C and N, Soil Science. 167: 110-116.
8.Conforti, M., Buttafuoco, G., Leone, A.P., Aucelli, P.P.C., Robustelli, G.,and Scarciglia, F. 2013. Studying the relationship between water-induced soil erosion and soil organic matterusing Vis–NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena. 110: 44-58.
9.Curcio, D., Ciraolo, G., D’Asaro, F., and Minacapilli, M. 2013. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences. 19: 494-503.
10.Danesh, M., Bahrami, H.A., Darvishzadeh, R., and Noroozi, A.A. 2016. Investigating clay contents using laboratory diffuse reflectance spectroscopy. Iranian Journal of RS & GIS. 8: 1. 71-94. (In Persian)
11.Demattê, J.A.M., and Terra, F.S. 2014. Spectral pedology: A new perspective on evaluation of soils along pedogenetic alterations, Geoderma. 217-218: 190-200.
12.Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., and Scholten, T. 2020. Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 12: 14. 22-34.
13.Ge, Y., Thomasson, J.A., and Morgan, C.L.S. 2014. Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination. Geoderma. 213: 57-63.
14.Gomez, C., Lagacherie, P., and Coulouma, G. 2008. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma. 148: 141-148.
15.Gomez, C., Le Bissonnais, Y., Annabi, M., Bahri, H., and Raclot, D. 2013. Laboratory Vis–NIR spectroscopy as an alternative method for estimatingthe soil aggregate stability indexesof Mediterranean soils. Geoderma.
209-210: 86-97.
16.Guo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., and Linderman, M. 2019. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma.337: 32-41.
17.Hewson, R.D., Cudahy, T.J., Jones, M., and Thomas, M. 2012. Investigations into soil composition and texture using infrared spectroscopy. Appl. Environ. Soil Sci. 12p.
18.Kagan, T.P., Shachak, M., Zaady, E., and Karnieli, A. 2014. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma. 230-231: 171-184.
19.Lagacherie, P., Baret, F., Feret, J.B., Netto, J.M., and Robbez-Masson, J.M. 2008. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment.
112: 825-835.
20.Li, D., Durand, M., and Margulis, S.A. 2012. Potential for hydrologic characterization ofdeep mountain snowpack via passive microwave remote sensing in the KernRiver basin, Sierra Nevada, USA. Remote Sens. Environ. 125: 34-48.
21.Lu, P., Wang, L., Niu, Z., Li, L., and Zhang, W. 2013. Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery, Journal of Geochemical Exploration. 132: 26-33.
22.McDowell, M.L., Bruland, G.L., Deenik, J.L., Grunwald, S., and Knox, N.M. 2012, Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy, Geoderma. 189-190: 312-320.
23.Mulder, V.L., de Bruin, S., Schaepman, M.E., and Mayr, T.R. 2011. The use of remote sensing in soil and terrain mapping - A review. Geoderma. 162: 1-19.
24.Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H.A., Abbasi, M., Dematte, J.A.M., Arthur, E., and Panagos, P. 2018. Towards prediction of soil erodibility, SOM and CaCO 3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma. 314: 102-112.
25.Padarian, J., Minasny, B., and McBratney, A.B. 2019. Using deep learning to predict soil properties from regional spectral data. Geoderma Regional. 16: e00198.
26.Peng, L., Cheng, H., Wang, L.J., and Zhu, D. 2020. Comparisons the prediction results of soil properties based on fuzzy c-means clustering and expert knowledge from laboratoryVis-NIR spectroscopy data. Canadian J. of Soil Science. 101: 1. 33-44.
27.Qi, F., Zhang, R., Liu, X., Niu, Y., Zhang, H., Li, H., Li, J., Wang, B., and Zhang, G. 2018. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil and Tillage Research.184: 45-51.
28.Rawlins, B.G., Kemp, S.J., and Milodowski, A.E. 2011. Relationships between particle size distribution and VNIR reflectance spectra are weaker for soils formed from bedrock compared to transported parent materials. Geoderma. 166: 84-91.
29.Sawut, M., Ghulam, A., Tiyip, T., Zhang, Y.J., Ding, J.L., Zhang, F., and Maimaitiyiming, M. 2014. Estimating soil sand content using thermal infrared spectra in arid lands. International Journal of Applied Earth Observation and Geoinformation. 33: 203-210.
30.Stevens, A., Nocita, M., Toth, G., Montanarella, L., and van-Wesemael, B. 2013. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoSONE. 8: 6. e66409.
http://dx.doi.org/ 10.1371/ journal.pone.0066409.
31.Summers, D., Lewis, M., Ostendorf, B., and Chittleborough, D. 2011. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators. 11: 123-131.
32.Vašát, R., Kodešová, R., Borůvka, L., Klement, A., Jakšík, O., and Gholizadeh, A. 2014, Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS), Geoderma. 232-234: 208-218.
33.Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J, and Skjemstad, J.O. 2006. Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 131: 59-75.
34.Xian-Li, X., Xian-Zhang, P., and Bo, S. 2012. Visible and Near-Infrared Diffuse Reflectance Spectroscopy for Prediction of Soil Properties near a Copper Smelter. Pedosphere. 22: 3. 351-366.
35.Xu, D., Ma, W., Chen, S., Jiang, Q., He, K., and Shi, Z. 2018a. Assessment of important soil properties related to Chinese Soil Taxonomy based onvis–NIR reflectance spectroscopy. Computers and Electronics in Agriculture. 144: 1-8.
36.Xu, S., Zhao, Y., Wang, M., and Shi, X. 2018b. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma. 310: 29-43.
37.Zhao, L., Hong, H., Fang, Q., Algeo, T.J., Wang, C., Li, M., and Yin, K. 2020. Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting Quaternary soil deposits. Catena. 184: 104239.