1.Alexakis, D.D., and Tsanis, I.K.2016. Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODISdata. Environmental Earth Sciences.75: 14. 67-77.
2.Amini, M., Dezful, A., and Azadi, M. 2019. Comparison of precipitation zoning on Iran using different interpolation methods and in a case-by-case manner. Nevar Journal of meteorological organization. 18: 101. 67-74.
3.Arowolo, A., Bhowmik, O.K.A., Qi, M., and Deng, X. 2017. Comparison of spatial interpolation techniques to generate high-resolution climate surfaces for Nigeria. International Journal of Climatology.37: 1. 179-192.
4.Ataei, H., Tavana, M., and Parsa, L. 2014. Climate Analysis of Mazandaran Province and Mazandaran Province's Climate Zoning Using Gis. The Second national conference of Tourism, Geography and Stable Environment.18: 3. 95-106. (In Persian)
5.Badpi, A., Kavianpour, M., and Moazami Goodarzi, S. 2017. Investigating the performance of precipitation algorithms in comparison with radar in Golestan and Mazandaran regions. 2nd International Conference on Civil Engineering, Architecture and Crisis Management.(In Persian)
6.Bostan, P., Heuvelink, G., and Akyurek, S. 2012. Comparison of regressionand kriging techniques for mapping
the average annual precipitation of Turkey. International Journal of Applied Earth Observation and Geoinformation. 19: 1. 115-126.
7.De Mello Cunha, A., dos Santos, G.R., de Souza, E., Trindade, S.F., Filho, E.I.F., Lani, J.L., and França, M.M. 2012. Kriging and Cokriging for spatial interpolation of rainfall in Espirito Santo State, Brazil. Proceedings of the 10th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, 10-13th July, Florianópolis, SC, Brazil. pp. 97-102.
8.Dellavari, D., Mirzai zade, M., andTarek, M. 2014. Evaluation of Different Kriging Methods in Ilam ProvinceRain Zone. Second National Conference on Architecture, Civil and Urban Environment, Hamadan, Martyr Mofteh Callege. (In Persian)
9.Gao, F., Zhang, Y., Chen, Q., Wang, P., Yang, H., Yao, Y., and Cai, W. 2018. Comparison of two long-term and
high-resolution satellite precipitation datasets in Xinjiang, China. Atmospheric Research. 212: 15. 150-157.
10.Ghaderpour, E., Ben Abbes, A., Rhif, M., Pagiatakis, S.D., and Farah, I. R. 2020. Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software. International Journal of Remote Sensing, 41: 6. 2374-2390.
11.Guo, H., Chen, S.H., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Junjun, H.U., and Stepanian, P.M. 2016. Early Assessment of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement over China. Journal of Atmospheric Research. 176: 14. 121-133.
12.Hosseini Moghari, S.M., Iraqinejad, S.H., and Ebrahimi, K. 2016. Evaluation of global rainfall bases and their application in drought monitoring-Case (Karkheh basin). Journal of Agricultural Meteorology. 102: 2. 14-26.
13.Jamei, M., and Mousavi Baigi, M. 2013. Spatial and zoning estimation of reference evapotranspiration in Khuzestan province. Journal of Geography and Regional Development (Research Journal). 11: 21. 23-43.
14.Kumari, M., Basistha, A., Bakimchandra, O., and Singh, K.C. 2016. Comparison of spatial interpolation methods for mapping rainfall in Indian Himalayas of Uttarakhand region. Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment. Springer, Cham, Switzerland. 104: 56. 156-165.
15.Nabi Pur, Y., and Vafa Khah, M.2017. Comparison of Different Geostatistical Methods for Estimating Rainfall in Haji Ghoshan Watershed. Journal of range and watershed management. 2: 69. 487-502.
16.Nadi, M., Jamei, M., Bazrafshan, J.,and Janat Rostami, S. 2012. Evaluation of Different Methods for Interpolation of Mean Monthly and Annual Precipitation Data (Case Study: Khuzestan Province), Physical Geography Research.4: 44. 130-117. (In Persian)
17.Nadi, M., Khalili, A., Pour Tahmasi, K., and Bazrafshan, J. 2013. Comparisonof different climatological zoning techniques to determine the most important factors affecting the growth of Chahar Bagh area trees, Journal of Forest and Wood Products (iranian journal of natural recources). 1: 66. 95-83. (In Persian)
18.Poméon, T., Jackisch, D., and Diekkrüger, B. 2017. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. Journal of Hydrology. 547: 103. 222-235.
19.Seyf, S., and Sherafati, A. 2021. Analysis of TRMM precipitation data uncertainty in groundwater level modeling of Rafsanjan plain. Journal of Water and Irrigation Managemen. 11:2.207-22. DOI: 10.22059/jwim.2021. 319364.862.
20.Sharifi, A., Saghafian, B., and Hold Stein Ker, R. 2016. Efficiency of the latest product manufacturers of satellite evaluation with high resolution. The first national conference on water resources management, Kurdistan University.
(In Persian)
21.Tan, M.L., and Santo, H. 2018. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research. 202: 64. 63-76.
22.Ten, M.L., Ibrahim, A.L., Duan, Z.H., Cracknell, A.P., and Chaplot, V. 2015. Evaluation of six high-resolutiun satellite and ground-based precipitation products over Malaysia, remote Sens. 58: 7. 1504-1528.
23.Worqlul, A.W., Yen, H., Collick, A.S., Tilahun, S.A., Langan, S., and Steenhuis, T.S. 2017. Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia. Catena. 152: 78. 242-251.
24.Yang, X., Xiaojin, X., Liu, D., Ji, F., and Wang, L. 2015. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region, Advances in Meteorology. 655p.
25Yousefi Kabria, A., Nadi, M., and Sheikhi Arjanki, S.H. 2020. Increase the accuracy of monthly and annual precipitation maps using covariates in Mazandaran province. Iranian Water Researches Journal. 14: 3. 107-114.(In Persian)