1.Allen, R.G., Smith, M., Perrier, A., and Pereira, L. 1994. An Update for the Definition of Reference Evapotranspiration AND An Update for the Calculation of Reference Evapotranspiration. ICID Bull Int Comm Irrig Drain. Pp: 1-34.
2.Allen, R.G., Pereira, L.S., Raes, D., Smith, M., and Ab, W. 1998.Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome.
3.Allen, R.G., Pruitt, W.O., Wright, J.L., Howell, T.A., Ventura, F., Snyder, R.,et al. 2006. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 81: 1-2. 1-22.
4.Anabalón, A., and Sharma, A. 2017. On the divergence of potential and actual evapotranspiration trends: An assessment across alternate global datasets. Earths Future. 5: 9. 905-917.
5.Cleugh, H.A., Leuning, R., Mu, Q.,and Running, SW. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 106: 3. 285-304.
6.Courault, D., Seguin, B., and Olioso,A. 2005. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrig. Drain. Syst. 19: 3. 223-249.
7.Eichinger, W.E., Parlange, M.B., and Stricker, H. 1996. On the concept of equilibrium evaporation and the value of the Priestley-Taylor coefficient. Water Resour. Res. 32: 1. 161-164.
8.Ghaffari, V., Ghasemi, V.R., and Pauw, E. 2015. Agro climatically zoning of Iran by UNESCO approach. J. Dryland Agric. 4: 1. 63-74. (In Persian)
9.Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202: 18-27.
10.Hu, G., Jia, L., and Menenti, M. 2015. Comparison of MOD16 and LSA–SAF MSG evapo- transpiration products over Europe for 2011. Remote Sens. Environ. 156: 510-526.
11 Jabloun, M., and Sahli, A. 2008. Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data. Agric Water Manag. 95: 6. 707-715.
12.Jovanovic, N., Mu, Q., Bugan, R.,and Zhao, M. 2015. Dynamics of MODIS evapotranspiration in South Africa. Water SA. 41: 1. 79-91.
13.Krause, P., Boyle, D.P., and Bäse, F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 5: 89-97.
14 Khan, M.S., Liaqat, U.W., Baik, J., and Choi, M. 2018. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric. For. Meteorol. 25: 256-268.
15.Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, RAM., Fernández-Prieto, D., et al. 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci Model Dev. 10: 5. 1903-1925.
16.Mehdizadeh, S., Saadatnejadgharahassanlou, H., and Behmanesh, J. 2017. Calibration of Hargreaves–Samani and Priestley–Taylor equations in estimating reference evapotranspiration in the Northwestof Iran. Arch. Agron. Soil Sci.63: 7. 942-955.
17.Moradi, F., Kamali, G., and Vazifedoost M. 2015. Evaluation of Potential Evapotranspiration from MODIS Product Using Synoptic Stations of Zanjan Province. Res Climatol. Pp: 39-49. (In Persian)
18.Moraes, V.H., Giongo, P.R., Arantes, B.H.T, Costa, E.M., Ventura, M.V.A., Cavalcante, T.J., et al. 2019. Evaluation of Precipitation and Evapotranspiration Obtained by Remote Sensing With Meteorological Stations in the State of Goiás. J. Agric. Sci. 11: 4. 356-36.
19.Mu, Q., Heinsch, F.A., Zhao, M., and Running, S.W. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ. 111: 4. 519-536.
20.Mu, Q., Zhao, M., and Running, S.W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115: 8. 1781-1800.
21.Nadzri, M.I., and Hashim, M. 2014. Validation of MODIS Data for Localized Spatio-Temporal Evapotranspiration Mapping. IOP Conference Series:Earth and Environmental Science.18: 1. 012183.
22.Pachauri, R.K., Allen, M.R., Barros, V.R., Broome J., Cramer, W., Christ, R., et al. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC 2014.
23.Priestley, C., and Taylor, R.J. 1972.On the Assessment of Surface HeatFlux and Evaporation Using Large- Scale Parameters. Mon. Weather Rev. 100: 2. 81-92.
24.Reyes-González, A., Kjaersgaard, J., Trooien, T., Hay, C., and Ahiablame,L. 2018. Estimation of Crop Evapotranspiration Using Satellite Remote Sensing-Based Vegetation Index. Adv. Meteorol. 2018: 1. 1-12.
25.Ruhoff, A.L., Paz, A.R., Aragao, L., Mu, Q., Malhi, Y., Collischonn, W.,et al. 2013. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modeling in theRio Grande basin. Hydrol. Sci. J.58: 8. 1658-1676.
26.Running, S.W., Mu, Q., Zhao, M., and Moreno, A. 2019. User’s Guide MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3 and Year-end Gap-filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (For Collection 6).
27.Senay, G.B., Budde, M.E., and Verdin, J.P. 2010. Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model. Agric. Water Manag. 98: 4. 606-618.
28.Sullivan, R.C., Cook, D.R., Ghate, V.P., Kotamarthi, V.R., and Feng, Y. 2019. Improved spatiotemporal representativeness and bias reduction of satelliteābased evapotranspiration retrievals via use of in situ meteorology and constrained canopy surface resistance. J. Geophys. Res. Biogeosci. 124: 2. 342-352.
29.Westerhoff, R.S. 2015. Remote Sensing of Environment Using uncertainty of Penman and Penman – Monteith methods in combined satellite and ground-based evapotranspiration estimates. Remote Sens Environ.169: 102-112.
30.Willmott, C.J. 1984. On the Evaluation of Model Performance in Physical Geography. Spatial statistics and models. Springer, Dordrecht, Pp: 443-460.
31.Xu, T., Guo, Z., Xia, Y., Ferreira, V.G., Liu, S., Wang, K., Yao, Y., Zhang, X. and Zhao, C. 2019. Evaluation of twelve evapotranspiration products from machine learning, remote sensing,
and land surface models over the conterminous United States. J. Hydrol. 578: 12405.
32.Zhang, K., Kimball, J.S., and Running, S.W. 2016. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water. 3: 6. 834-853.
33.Zhang, K., Zhu, G., Ma, J., Yang, Y., Shang, S., and Gu, C. 2019. Parameter Analysis and Estimates for the MODIS Evapotranspiration Algorithm and Multiscale Verification. Water Resour. Res. 55: 3. 2211-2231.