1.Adamczyk, Z., Siwek, B., Zembala, M., and Belouschek, P. 1994. Kinetics of localized adsorption of colloid particles. Advance in Colloid and Interface Science. 48: 151-280.
2.Bradford, S.A., Šimůnek, J., Bettahar, M., van Genuchten, M.Th., and Yates, S.R. 2003. Modeling colloid attachment, straining and exclusion in saturated porous media. Environmantal Science and Technology. 37: 2242-2250.
3.Christian, P., Von der Kammer, F., Baalousha, M., and Hofmann, T. 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology.17: 326-343.
4.Cirtiu, C.M., Raychoudhury, T., Ghoshal, S., and Moores, A. 2011. Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post- grafted with common polymers. Colloids and Surfaces. a: Physicochem. 390: 1-3. 95-104.
5.Darlington, T.K., Neigh, A.M., Spencer, M.T., Guyen, O.T.N., and Oldenburg, S.J. 2009. Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol. Chem.
28: 1191-1199.
6.Duan, R., Dong, Y., and Zhang, Q. 2018. Characteristics of Aggregate Size Distribution of Nanoscale Zero-Valent Iron in Aqueous Suspensions and Its Effect on Transport Process in Porous Media. Water. 10: 6. 1-14.
7.Esfahani, A.R., Firouzi, A.F., Sayyad, G., and Kiasat, A.R. 2014. Transport and retention of polymer-stabilized zero-valent iron nanoparticles in saturated porous media: effects of initial particle concentration and ionic strength. J. Ind. Eng. Chem. 20: 5. 2671-2679.
8.Hassanizadeh, S.M., and Schijven, J.F. 2000. Use of bacteriophages as tracers for the study of removal of viruses.In: Dassargues. A. (Ed.), Tracers and Modeling in Hydrogeology. Proceedings of TRAM, held in Liege. J. Belgium.23: 167-174.
9.Jiemvarangkul, P., Zhang, W.X., and Lien, H.L. 2011. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem. Engin. J. 170: 482-491.
10.Johnson, P.R., and Elimelech, M. 1995. Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir. 11: 801-812.
11.Kanel, S.R., Nepal, D., Manning, B., and Choi, H. 2007. Transport of surface-modified iron nanoparticle in porous media and application to arsenic (III) remediation. Nanoparticle Research. 9: 725-735.
12.Khalil, A., Eljamal, O., Eljamal, R., Sugihara, Y., and Matsunaga, N. 2018. Treatment and regeneration of nano-scale zero-valent iron spent in water remediation. Evergreen. 04: 01. 21-28.
13.Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy,R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., and Lead, J.R. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability and effects. Environ Toxicol Chem.27: 1825-1851.
14.Kouhiyan Afzal, M.T., Farrokhian Firouzi, A., and Taghavi, M. 2017. Synthesis of bare and four different polymer- stabilized zero-valent iron nanoparticles and their efficiency on hexavalent chromium removal from aqueous solutions. J. Water Environ. Nanotechnol. 2: 4. 278-289.
15.Kuhnan, F., Bhattacharjee, B.K., Elimelech, M., and Kretzschmar, R. 2000. Transport of iron oxide colloid in packed quartz sand media: monolayer and multilayer deposition. J. Coll. Interface Sci. 231: 1. 32-41.
16.Pehnrat, T., Saleh, Sirk, N., Kim, H.J., Tilton, R.D., and Lowry, G.V. 2008. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanoparticle Res. 10: 5. 795-814
17.Lin, Y.H., Tseng, H.H., Wey, M.Y., and Lin, M.D. 2010. Characteristics of two types of stabilized nano zero-valentiron and transport in porous media. Science of the Total Environment.
408: 10. 2260–2267.
18.Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., and Tufenkji, N. 2010. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environmental Science and Technology. 44: 17. 6532-6549.
19.Phenrat, T., Liu, Y., Tilton, R.D.,and Lowry, G.V. 2009. Adsorbed polyelectrolyte coatings decrease
Fe0 nanoparticle reactivity with TCEin water: onceptual model and mechanisms. Environ. Sci. Technol.43: 507-1514.
20.Ramazanpour Esfahani, A., Farrokhian Firouzi, A., Sayyad, Gh., and Kiasat, A.R. 2013. Transport and retention of polymer-stabilized zero-valent iron nanoparticles in saturated porous media: Effects of initial particle concentration and ionic strength. J. Indus. Engin. Chem. 20: 5. 2671-2679.
21.Raychoudhury, T., Naja, G., and Ghoshal, S. 2010. Assessment of transport of two polyelectrolyte- stabilized zero- valent iron nanoparticles in porous media. J. Contamin. Hydrol. 118: 3-4. 143-151.
22.Singh, R., and Misra, V. 2016. Stabilization of Zero-Valent Iron Nanoparticles: Role of Polymers and Surfactants. P 985-1007, In: Aliofkhazraei M. (eds) Handbook of Nanoparticles. Springer International Publishing, Switzerland.
23.Simunek, J., Sejna, M., Saito, H., Sakai, M., and Van Genuchten, M.Th. 2008. The HYDRUS-1D Software package for simulating the one- dimensional movement of water, heat, and multiple solutes in variably- saturated media, Version 4.0x Hydrus Series 3, Department of Environmental Sciences, University of California Riverside, CA, USA, 296p.
24.Tiraferri, A., and Sethi, R. 2013. Enhanced transport of zero-valent iron nanoparticles in saturated porous media by Guar gum. J. Nanopart. Res. 11: 635-645.
25.Toride, N., Leij, F.J., and van Genuchten, M.Th. 1999. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments Version2.1. Research Report. 137. U.S. Salinity Laboratory, Riverside, CA, 121p.
26.Xue, D., and Sethi, R. 2012. Viscoelastic gels of guar and xanthan gum mixtures provide long-
term stabilization of iron micro- and nanoparticles. J. Nanopart Res. 14: 1239.
27.Yang, Z., Qiu, X., Fang, Z., and Pokeung, T. 2015. Transport of nano zero-valent iron supported by mesoporous silica microspheres in porous media. Water Science and Technology. 71: 12. 1800-1805.