1.Azimi, A.H., Rajaratnam, N., and Zhu, D.Z. 2013. Discharge characteristics of weirs of finite crest length with upstream and downstream ramps. J. Irrig. Drain. Eng. 139: 1. 75-83.
2.Chanson, H. 2006. Discussion of “discharge through a permeable rubble mound weir” by Kohji Michioku, Shiro Maeno, Takaaki Furusawa and Masanori Haneda, J. Hydraul. Eng. 132: 4. 432-433.
3.Dehghani, A.A., Bashiri, H., Meshkati Shahmirzadi, M.E., and Ahadpour, A. 2009. Experimental investigation of scouring in downstream of combined flow over weirs and below gates. 4: 3578-3584. 33rd Iahr Conference. Canada.
4.Dey, S., and Sarkar, A. 2006. Scour downstream of an apron due to submerged horizontal jets. J. Hydr. Engin. 132: 3. 246-257.
5.Faruque, M.A.A., Sarathi, P., and Balachandar, R. 2006. Clear water local scour by submerged three dimension wall jets: effect of tail water depth. J. Hydr. Engin. 132: 6. 575-580.
6.Fathi Moghadam, M., Sardabi, M.T., and Rahmanshahi, M. 2018. Numerical simulation of the hydraulic performance of triangular and trapezoidal gabion weirs in free flow condition. J. Flow Measure. Instrument. 62: 93-104.
7.Kells, J.A. 1993. Spatially varied flow over rock fill embankments. Can. J. Civ. Eng. 20: 5. 820-827.
8.Kells, J.A. 1994. Reply on discussion of spatially varied flow over rock fill embankments. Can. J. Civ. Eng. 21: 1. 63-166.
9.Kells, J.A. 2001. Effect of grain size on local channel scour below a sluice gate. Can. J. Civil Engin. 28: 440-451.
10.Legrand, J. 2002. Revisited analysis of pressure drop in flow through crushed rocks. J. Hydr. Engin. ASCE. 128: 11. 1027-1034.
11.Leu, J.M., Chan, H.C., and Chu, M.S. 2008. Comparison of turbulent flow over solid and porous structures mounted on the bottom of a rectangular channel. Flow Meas. Instrument. 19: 6. 331-337.
12.Lim, S., and Yu, G. 2002. Scouring downstream of sluice gate. P 395-409. First International conference on scour of foundation. Texas Transportation Institute. Nov. 17 – 20. Texas A & M University. College Station. Texas. USA.
13.Madadi, M.R., Hosseinzadeh Dalir, A., and Farsadizadeh, D. 2014. Investigation of flow characteristics above trapezoidal broad-crested weirs. Flow Meas. Instrument. 38: 139-148.
14.Michioku, K., Maeno,S., Furusawa,T., and Haneda, M. 2005. Discharge through a permeable rubble mound weir. J. Hydraul. Eng. 131: 1. 1-10.
15.Mohamed, H.I. 2010. Flow over gabion weirs. J. Irrig. Drain. Eng. 136: 8. 573-577.
16.Mohammadzadeh-Habili, J., Heidarpour, M., and Haghiabi, A. 2016. Comparison the hydraulic characteristics of finite crest length weir with quarter-circular crested weir. Flow Meas. Instrument. 52:Supplement C. 77-82.
17.Moradi, M., and Fathi-Moghadam, M. 2019. Experimental investigation of Submerged Flow over Porous Embankment Weirs with Up and Downstream Slopes. Irrigation Sciences and Engineering (online) doi: 10.22055/jise.2018.20052.1432.
18.Nazari, S., and Gholami, R. 2014. Laboratory evaluation of Scour rate and energy dissipation in Gabion Stepped Weirs with considering the effect of Discharge and tail water depth. J. Appl. Sci. Agric. 9: 4. 1424-1439.
19.Pagliara, S., and Palermo, M. 2013. Rock Grade Control Structures and Stepped Gabion Weirs: Scour Analysis and Flow Features. J. Acta Geophysic. 61: 1. 126-150.
20.Pagliara, S., Palermoa, M., Mahmoudi Kurdistania, S., and Sagvand Hassanabadia, L. 2015. Erosive and hydrodynamic processes downstream of low-head control structures. J. Hydr. Res. 3: 2. 122-131.
21.Peyras, L., Royet, P., and Degoutte, G. 1992. Flow and energy dissipation over stepped gabion weirs. J. Hydraul. Eng. 118: 5. 707-717.
22.Qian, J., Zhan, H., Zhao, W., and Sun, F. 2005. Experimental study of turbulent unconfined groundwater flow in a single fracture. J. Hydrol. 311: 1. 134-142.
23.Sargison, J., and Percy, A. 2009. Hydraulics of broad-crested weirs with varying side slopes. J. Irrig. Drain. Eng. 135: 1. 115-118.
24.Stephenson, D. 1979. Gabion energy dissipators. Proc. 13th ICOLD Congress. New Delhi, India. 50: 3. 33-43.
25.Tavakol-Sadrabadi, M., Fathi-Moghadam, M., and Mohammadpour R. 2018. Numerical Simulation of the over and through flow Discharge in Broad-Crested Gabion Weirs with side Slopes. Amirkabir J. Civil Eng. 50: 4. 191-194.
26.Wang, X.K., Hao, Z.Y., and Tan, S.K. 2010. Hydrodynamics of trapezoidal embankment weirs. J. Hydrodyn. Ser. B 22: 5. 386-390.
27.Zhang, G., and Chanson, H. 2016. Gabion Stepped Spillway: Interactions between Free-Surface, Cavity and Seepage Flows. J. Hydr. Engin. 142: 5. 601-611.