1.Fawcett, T. 2006. An introduction to ROC analysis. Pattern recognition letters. 27: 8. 861-874.
3.Organi, M., Serajian, M.R., and Homayouni, S. 2009. Detection under the pixel of urban areas changes by spectral composition analysis. National Geosciences Conference of Tehran Mapping Organization of Iran. Pp: 1-11. (In Persian)
4.Yao, Y., Ta, W., Jia, X., and Xiao, J. 2011. Bank erosion and accretion along the Ningxia–Inner Mongolia reaches of the Yellow River from 1958 to 2008. Geomorphology. 127: 99-106.
5.Théau, J. 2012. Change detection. In Springer Handbook of Geographic Information. Springer Berlin Heidelberg. Pp: 75-94.
6.Archana, S., and Garg, R.D. 2012. Nayan Sharma. “RS-GIS Based Assessment of River Dynamics of Brahmaputra River in India”. J. Water Resour. Prot. 4: 63-72.
7.Ministry of Energy and Office of Engineering and Technical Measures for Water. 2012. Guide to River Morphology Studies. Iran. J. 592: 17-18. (In Persian)
8.Sharfi, S., Shami, A., and Yamani, M. 2014. Investigation of Morphological Changes in Atrak At 20 Years. Geographic Space Magazine. 4: 14. 127-148. (In Persian)
9.Javheri Tehrani, M., Mousavi, F., and Hosseini, Kh. 2015. The study of morphology of warps with controlled flow using RS and GIS techniques(Case study: Zayandeh Rood River in the lower Zayandeh-e-Rood Dam). J. Soil Water Sci.: Science and Technologyof Agriculture and Natural Resources.20: 77. 25-44. (In Persian)
10.Alawi Panah, S.K. 2015. The principles of remote sensing and the interpretation of satellite imagery and aerial photographs. second edition. Tehran University Press. 780p. (In Persian)
11.Khastar Brujeni, M. 2015. Investigation of morphological changes of the Armand River using Landsat satellite images. PHD Seminar. Mashhad Ferduwsi University. Pp: 62-88. (In Persian)
12.Dhari, S., Arya, D.S., and Murumkar A.R. 2015. Application of remote sensing and GIS in sinuosity and river shifting analysis of the Ganges River in Uttarakhand plains. Applied Geomatics. 7: 13-21.
13.Yamani, M., Rahimi, M., and Veysi, A. 2015. Morphometry and Comparison of Artical Variants Transformations in the Three Recent Decades Case Study: Downstream of Moghan Dam. J. Quan. Geomorph. Res. 3: 4. 74-89. (In Persian)
14.Li, W., and Gong, P. 2016. Continuous monitoring of coastline dynamics in western Florida with a year time series of Landsat imagery. Remote Sensing of Environment. 179: 196-209.
15.Khastar Brujeni, M., Khodashenas, S.R., Samadi Boroujeni, H., and Taheriyan, E. 2016. Investigation of morphological changes in the Ermand river during the last thirty years (1995-1956) using Landsat satellite images. J. Civil Engin. Amir Kabir University of Technology. At the time of printing. (In Persian)
16.Dewan, S., Corner, R., Saleem, A., Rahman, M., Haider, R., Rahman, M.D., and Sarker, M. 2017. Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsatand hydrological data. Geomorphology. 276: 257-279.
17.Jozi, S.A., Rezaeian, S., and Saei, F. 2017. Study of morphologic changes in Karun River using linear directional mean, remote sensing and geographic information system. Urabn Manage Energy Sustainability. 1: 1. 71-78.
18.Wang, X., Liu, Y., Ling, F., Liu, Y.,and Fang, F. 2017. Spatio-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015. Inter. J. Geo-Inf.6: 68-89.
19.Taheriyan, E., Khastar Brujeni, M., and Samadi Boroujeni, H. 2017. Comparison of Pixel Pea Performance of Two MNDWI and AWEIshadow Indicators in Low and Narrow Rivers. J. Inf. Technol. Engin. 5: 2. 99-122. (In Persian)