1.Ataie-Ashtiani, B., and Farhadi, L. 2006. A stable moving-particle semi-implicit method for free surface flows. Fluid Dyn Res. 38: 4. 241-256.
2.Chen, R., Cai, Q., Zhang, P., Li, Y., Guo, K., Tian, W., Qiu, S., and Su, G.H. 2019. Three-dimensional numerical simulation of the HECLA-4 transient MCCI experiment by improved MPS method. Nucl. Eng. Des. 347: 95-107.
3.Jafari Nodushan, E., Hosseini, Kh., Mousavi, S.F., Shakibaeinia, A., and Farzin, S. 2015. The simulation of the dam-break flow by weakly compressible moving particle semi-implicit method. Modares Civil Eng. J. 15: 3. 25-36. (In Persian)
4.Khayyer, A., Naoki, T., Yuma, Sh., and Gotoh, H. 2019. Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Appl. Ocean Res. 82: 397-414.
5.Kocaman, S., and Ozmen-Cagatay, H. 2015. Investigation of dam-break induced shock waves impact on a vertical wall.
J. Hydrol. 525: 1-12.
6.Kocaman, S., and Ozmen-Cagatay, H. 2012. The effect of lateral channel contraction on dam break flows: Laboratory experiment. J. Hydrol.433: 145-153.
7.Koshizuka, S., Hillman, M., Chen, J.S., Roth, M.J., Reddy, B.D., Ortiz, M., and Kirchdoerfer, T. 2016. Moving Particle Semi-implicit (MPS) Method - Application to Free Surface Flow. Bulletin for the International Association for Computational Mechanics. United Kingdom.
8.Koshizuka, S., and Oka, Y. 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123: 3. 421-434.
9.Mohrig, D. 2004. Conservation of Mass and Momentum: sedimentary Geology. MIT OCW.
10.Ozmen-Cagatay, H., and Kocaman, S. 2011. Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Eng. Appl. Comput. Fluid Mech. 5: 4. 541-552.
11.Ozmen-Cagatay, H., Kocaman, S., and Guzel, H. 2014. Investigation ofdam-break flood waves in a dry channel with a hump. J. Hydro-Environ. Res.8: 3. 304-315.
12.Prometech. 2016. Particleworkstheory manual, Particleworks software documentation. Prometech, Inc.
13.Shakibaeinia, A., and Jin, Y.C. 2011. A mesh-free particle model for simulation of mobile-bed dam break. Adv. Water Resour. 34: 6. 794-807.
14.Sheybanifard, H., Zounemat Kermani, M., Baraniand, Gh.A., and Memarzadeh, R. 2018. Sensitivity analysis of the initial distance between particles in the smoothed particle hydrodynamics method in simulation of dam break.J. Water Soil Cons. 25: 4.153-169.(In Persian)
15.Soares-Frazão, S., Canelas, R., Cao, Z., et al. 2012 Dam-break flows over mobile beds: experiments and benchmark tests for numerical models. J. Hydraul Res. 50: 4. 364-375.
16.Soares-Frazão, S., Noël, B., and Zech, Y. 2004. Experiments of dam-break flow in the presence of obstacles. River Flow. Pp: 911-918.
17.Soares-Frazão, S., and Zech, Y. 2008. Dam-break flow through an idealised city. J. Hydraul. Res. 46: 5. 648-658.
18.Soares-Frazão, S., and Zech, Y. 2007. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res. 45: 27-36.
19.Sun, X., Sun, M., Takabatake, K., Pain, C., and Sakai, M. 2019. Numerical simulation of free surface fluid flows through porous media by using the explicit MPS method. Tranp porous media. 127: 1. 7-33.
20.Vischer, D., and Hager, W.H.1998. Dam Hydraulics, John Wiley, Chichester, United Kingdom, 316p.
21.Zech Y., and Soares-Frazão, S. 2007. Dam-break flow experiments and real-case data. A database from the European IMPACT research. J. Hydraul. Res.45: 5-7.
22.Zhang, T., Koshizuka, S., Xuan, P., Li, J., and Gong, C. 2018. Enhancement of stabilization of MPS to arbitrary geometries with a generic wall boundary condition. Comput Fluids. 0: 1-25.
23.Zhang, Y., and Van, D. 2019. MPS-FEM coupled method for fluid-structure interaction in 3D dam-break flows. Int. J. Comput. Methods. 15: 3. 1-16.