1.Ahmadianfar, I., and Adib, A. 2014. Optimizing Hydropower Dams Operation Using Hybrid of PSO and GA (Case Study: Dez Dam). J. Irrig. Sci. Engin.38: 3. 63-71. (In Persian)
2.Ahmadianfar, I., Samadi-Koucheksaraee, A., and Bozorg-Haddad, O. 2017. Extracting Optimal Policies of Hydropower Multi-Reservoir Systems Utilizing Enhanced Differential Evolution Algorithm. Water Resources Management. 31: 14. 4375-4397.
3.Bozorg-Haddad, O., Janbaz, M., and Loáiciga, H.A. 2016. Application of the gravity search algorithm to multi-reservoir operation optimization. Advances in Water Resources. 98: 173-185.
4.Clerc, M., and Kennedy, J. 2002. The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE transactions on Evolutionary Computation. 6: 1. 58-73.
5.Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., and Harley, R.G. 2008. Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Transactions on evolutionary computation. 12: 2. 171-195.
6.Eberhart, R.C., and Kennedy, J. 1995.A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. IEEE.Pp: 39-43.
7.Fan, H.Y., and Lampinen, J. 2003. A trigonometric mutation operation to differential evolution. J. Global Optim. 27: 1. 105-129.
8.Fan, Q., and Yan, X. 2015. Differential evolution algorithm with self-adaptive strategy and control parameters for
P-xylene oxidation process optimization. Soft Computing. 19: 5. 1363-1391.
9.Golberg, D.E. 1989. Genetic algorithms in search, optimization, and machine learning. 1989.
10.Hao, Z.F., Guo, G.H., and Huang, H. 2007. A particle swarm optimization algorithm with differential evolution. Machine Learning and Cybernetics, 2007 International Conference on.Pp: 1031-1035.
11.Karaboga, D., and Akay, B. 2009. A comparative study of artificial bee colony algorithm, Applied mathematics and computation, 214: 1. 108-132.
12.Liu, J., Lampinen, J., Matousek, R., and Osmera, P. 2002. Adaptive parameter control of differential evolution, Proc. Mendel. Pp: 19-26.
13.Liu, S., Wang, X., and You, X. 2007. Cultured differential particle swarm optimization for numerical optimization problems, Natural Computation, 2007. ICNC 2007. Third International Conference on. Pp: 642-648.
14.Reddy, M.J., and Kumar, D.N. 2006. Optimal reservoir operation using multi-objective evolutionary algorithm, Water Resources Management. 20: 6. 861-878.
15.Samadi-Koucheksaraee, A., Ahmadianfar, I., Bozorg-Haddad, O., and Asghari-Pari, S.A. 2018. Gradient Evolution Optimization Algorithm to Optimize Reservoir Operation Systems. Water Resources Management. 33: 2. 603-625.
16.Storn, R., and Price, K. 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces.J. Global Optim. 11: 4. 341-359.
17.Taghian, M., and Ahmadianfar, I. 2018. Maximizing the Firm Energy Yield Preserving Total Energy Generation Via an Optimal Reservoir Operation, Water Resources Management, 32: 1. 141-154.
18.Xu, X., Li, Y., Fang, S., Wu, Y.,and Wang, F. 2008. A noveldifferential evolution scheme combined with particle swarm intelligence, Evolutionary Computation, 2008.CEC 2008. (IEEE World Congresson Computational Intelligence). IEEE Congress on, Hong Kong, China.Pp: 1057-1062.
19.Zhang, J., Wu, Z., Cheng, C.T., and Zhang, S.Q. 2011. Improved particle swarm optimization algorithm for multi-reservoir system operation, Water Science and Engineering, 4: 1. 61-74.
20.Zhang, W.J., and Xie, X.F.2003. DEPSO: hybrid particle swarm with differential evolution operator, Systems, Man and Cybernetics, 2003. IEEE International Conference on.Pp: 3816-3821.