1.Abbasi, F. 2009. Assessment of indirect methods to estimate soil hydraulic properties for simulating soil moisture in a sandy loam soil. J. Agric. Engin. Res.9: 4. 31-44. (In Persian)
2.Afrasiabi, F., Khodaverdiloo, H., Asadzadeh, F., and van Genuchten, M.Th. 2019. Comparison of alternative soil particle-size distribution models and their correlation with soil physical attributes. J. Hydrol. Hydromech. 67: 2. 179-190.
3.Bayram, M., and Bahmani, O. 2017. Determination appropriate model for estimating soil water characteristic curve in various moisture conditions in the one compacted clay soil. J. Environ. Stud.43: 1. 73-86. (In Persian)
4.Blake, G.R., and Hartge, K.H. 1986. Bulk density. P 363-375, In: Klute, A. (Ed), Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA. Madison. WI.
5.Bolster, C.H., and Tellinghuisen, J. 2010. On the significance of properly weighting sorption data for least squares analysis. Soil. Sci. Soc. Am. J. 74: 2. 670-679.
6.Cantrell, C.A. 2008. Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems. Atmos. Chem. Phys. 8: 5477-5487.
7.Filipović, V., Weninger, T., Filipović, L., Schwen, A., Bristow, K.L., Zechmeister-Boltenstern, S., and Leitner, S. 2018. Inverse estimation of soil hydraulic properties and water repellency following artificially induced drought stress. J. Hydrol. Hydromech. 66: 2. 170-180.
8.Ghobadian, R., Farhadi, B., Maleki, R., and Farmanifard, M. 2015. 2D/3D numerical simulation of saturated and unsaturated soil characteristics and comparison with tension disc. Irrigation Sciences and Engineering (Sci. J. Agric.). 37: 4. 133-143. (In Persian)
9.Groh, J., Stumpp, C., Lücke, A., Pütz, T., Vanderborght, J., and Vereecken, H. 2018. Inverse estimation of soil hydraulic and transport parameters of layered soils from water stable isotope and lysimeter data. Vadose Zone J. 17: 1. 1-19.
10.Haghverdi, A., Ghahraman, B., Joleini, M., Khoshnud Yazdi, A.A., and Arabi, Z. 2011. Comparison of different Artificial Intelligence methods in modeling water retention curve (Case study: North and Northeast of Iran). J. Water Soil Cons. 18: 2. 65-84. (In Persian)
11.Haghverdi, A., Ghahraman, B., Khoshnud Yazdi, A.A., Joleini, M., and Arabi, Z. 2012. Evaluation and comparison between some point and parametric pedotransfer functions in predicting soil water contents in different matric potentials. J. Water Soil Cons. 19: 2. 1-22. (In Persian)
12.Jacob, H., and Clarke, G. 2002. Methods of Soil Analysis, Part 4, Physical Method. Soil Science Society of America, Inc, Madison, Wisconsin, USA. 1692p.
13.Jafari Gilandeh, S., Rasoulzadeh, A., and Khodaverdiloo, H. 2013. Evaluating some pedotransfer functions for simulation of transient water flow in soil. J. Water Soil Resour. Cons. 2: 4. 1-13. (In Persian)
14.Khodaverdiloo, H., Homaee, M.,van Genuchten, M.Th., and Dashtaki, S.G. 2011. Deriving and validating pedotransfer functions for some calcareous soils. J. Hydrol. 399: 1-2. 93-99.
15.Lai, J., and Ren, L. 2016. Estimation of effective hydraulic parameters in heterogeneous soils at field scale. Geoderma. 264: 28-41.
16.Nakhaei, M., and Šimůnek, J. 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J. Hydrol. Hydromec. 62: 1. 7-15.
17.Nelson, D.W., and Sommers, L. 1982. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 2. Chemical and microbiological properties, Pp: 539-579.
18.Ramos, T.B., Gonçalves, M.C., Martins, J.C., van Genuchten, M.Th., and Pires, F.P. 2006. Estimation of soil hydraulic properties from numerical inversion of tension disk infiltrometer data. Vadose Zone J. 5: 684-696.
19.Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. 2001. Methods of Soil Analysis, Part 3, Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI. 1390p.
20.Tellinghuisen, J., and Bolster, C.H. 2009. Weighting formulas for the least-squares analysis of binding phenomena data. J. Phys. Chem. B. 113: 17. 6151-6157.
21.Tellinghuisen, J., and Bolster, C.H. 2010. Least-squares analysis of phosphorus soil sorption data with weighting from variance function estimation: A statistical case for the Freundlich isotherm. Environ. Sci. Technol. 44: 13. 5029-5034.
22.Valdes-Abellan, J., Pachepsky, Y.,and Martinez, G. 2018. Obtainingsoil hydraulic parameters from soil water content data assimilation under different climatic/soil conditions. Catena. 163: 311-320.
23.Van Genuchten, M.Th. 1980. A closed form equation for predictingthe hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Am.J. 44: 892-898.
24.Van Genuchten, M.Th., Leij, F.J.,and Yates, S.R. 1991. The RETCcode for quantifying the hydraulic functions of unsaturated soils. Report No. EPA/600/2-91/065. R.S Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency, Ada, OK. 85p.