Evaluation of nano chitosan efficiency in removal of benzene from aqueous solutions

Document Type : Complete scientific research article

Authors

1 b. Assistant Professor of the Environmental Science Department, Faculty of Environment and Fisheries, Gorgan University of Agricultural Sciences and Natural Resources.

2 MSc in Environmental Science and Engineering, Environmental Pollution, Gorgan University of Agricultural Sciences and Natural Resources

3 Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources

4 Masters in Health, Safety and Environment, Department of Chemistry, National Iranian Oil Production and Distribution Company of Iran

Abstract

Background and objectives: Benzene is an aromatic compound with the formula C6H6. This substance is highly toxic and cancers and is one of the pollutants in the refinery wastewater. Due to the pollution of water resources with this combination, it is very important to remove this material from the environment. For this purpose, the aim of this study was to synthesize a porous nano adsorbent using chitosan as an inexpensive and environmentally friendly adsorbent to remove benzene from aqueous solutions.
Materials and methods: Chitosan nano particles are made from chitosan powder made by Sigma Aldrich and 1% acetic acid solution. The effect of different pH parameters, initial concentration of benzene solution, adsorption dose and contact time are investigated. The concentration of benzene was determined by a UV-Vis Array spectrophotometer, Photonix Ar 2015, at 254 nm wavelength and analyzed using Excel and SPSS software.
Results: Results: According to the results, the optimum amount of benzene adsorption was obtained at pH 4. By increasing or decreasing the pH of the solution, the efficiency of benzene removal decreased. Also, with increasing contact time from 5 to 120 minutes, the efficiency of benzene removal decreased from 96.86 to 89.28%. By increasing the initial concentration of benzene, the removal efficiency had a upward trend and the highest removal percentage was obtained at a concentration of 70 mg / l, equal to 78.57%. Also, the results showed that by increasing the absorbent dose, the removal efficiency of benzene was decreasing and the highest percentage of removal in the absorbent dose was 0.01 g, 82.85%. In optimal conditions, the highest percentage of benzene removal was determined to be 85.66%.
Results: Results: According to the results, the optimum amount of benzene adsorption was obtained at pH 4. By increasing or decreasing the pH of the solution, the efficiency of benzene removal decreased. Also, with increasing contact time from 5 to 120 minutes, the efficiency of benzene removal decreased from 96.86 to 89.28%. By increasing the initial concentration of benzene, the removal efficiency had a upward trend and the highest removal percentage was obtained at a concentration of 70 mg / l, equal to 78.57%. Also, the results showed that by increasing the absorbent dose, the removal efficiency of benzene was decreasing and the highest percentage of removal in the absorbent dose was 0.01 g, 82.85%. In optimal conditions, the highest percentage of benzene removal was determined to be 85.66%.
Conclusion: Conclusion: The results of this study showed that nano chitosan adsorbent has a high efficiency in adsorption of benzene from aqueous solutions. Due to the fact that nano chitosan have a natural origin, it can be used as an environmentally friendly and inexpensive absorbent from other adsorbents to remove aromatic compounds from aqueous solutions.

Keywords


1.Beryani, A., Pardakhti, A., Ardestani, M., and Amini, S. 2015. Investigation of removal at the site of MTBE and benzene from groundwater of southern Tehran in the pilot scale using chemical oxidation using a zero-stabilized zero iron nanoparticle.J. Ecol. 40: 2. 261-275. (In Persian)
2.Bina, B., Amin, M.M., Rashidi, A.M., and Pourzamani, H. 2014. Evaluation of the efficiency of single-wall, multi-wall and carbon fiber nanotubes in removalof benzene and toluene from aqueous solutions. Water magazine. 24: 3. 12-21. (In Persian)
3.Chen, L., Si, Y., Zhu, H., Jiang, T., and Guo, Z. 2016.A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions. J. Membrane Sci. 520.760-768.
4.Corami, A., Mignardi, S., and Ferrini, V. 2008.Cadmium removal from single-and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption on hydroxyapatite. J. Coll. Interface Sci. 317: 2. 402-408.
5.Crisafully, R., Milhome, M.A.L., Cavalcante, R.M., Silveira, E.R., De Keukeleire, D., and Nascimento, R.F. 2008. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresource technology. 99: 10. 4515-4519.
6.Cuypers, C., Pancras, T., Grotenhuis, T., and Rulkens, W. 2002. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere. 46: 8. 1235-1245.
7.Ekhlasi, L., Younesi, H.A., Mehraban, Z., and Bahramifar, N. 2014. Synthesis of chitosan nanoparticles and its application in adsorption of lead metal ions from aqueous solutions. Two Monthly Scientific and Research Water and Wastewater. 24: 1. 10-18. (In Persian)
8.Folkard, G., and Sutherland, J.P. 2001. The use of Moringaoleifera seed as a natural coagulant for water and wastewater treatment. In Proceedings of Simposio Internacional Sobre Tecnologias Deapolo a Gestao De Recursos Hidricos.
9.Ghafourian, H., and Asadi Mozdi, A. 2011. Determination of quality and quantity of industrial waste effluent from paper production and application of GA-88 nano-adsorbent for removal of phenol. 3: 29-39. (In Persian)
10.Jabbar, Z., Angham, A., and Sami, G.H.F. 2014. Removal of azo dye from aqueous solutions using chitosan. Oriental J. Chem. 30: 2. 571-575.
11.Mohammed, J., Nasri, N.S., Zaini, M.A.A., Hamza, U.D., and Ani, F.N. 2015. Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated withNH3. International Biodeterioration & Biodegradation. 102: 245-255.
12.Mohammadi, L., Bazrafshan, E., Noroozifar, M., Ansari-Moghaddam, A., Barahuie, F., and Balarak, D. 2017. Adsorptive Removal of Benzene and Toluene from Aqueous Environments by Cupric Oxide Nanoparticles: Kinetics and Isotherm Studies. J. Chem. Article ID 2069519, 10p.
13.Mourya, V.K., and Inamdar, N.N. 2008. Chitosan-modifications and applications: opportunities galore. Reactive and Functional polymers. 68: 6. 1013-1051.
14.Rababah, A., and Matsuzawa, S. 2002. Treatment system for solid matrix contaminated with fluoranthene. II-Recirculating photodegradation technique. Chemosphere. 46: 1. 49-57.
15.Rezaei, H. 2016. Biosorption of chromium by using Spirulina sp. Arab. J. Chem. 9: 6. 846-853.
16.Salame, I.I., and Bandosz, T.J. 2001. Surface chemistry of activated carbons: combining the results of temperature-programmed desorption, Boehm, and potentiometric titrations. J. Coll. Interface Sci. 240: 1. 252-258.
17.Shahidi, F., Arachchi, J.K.V., and Jeon, Y.J. 1999. Food applications of chitin and chitosans. Trends in food science & technology. 10: 2. 37-51.
18.Sivakami, M.S., Gomathi, T., Venkatesan, J., Jeong, H.S., Kim, S.K., and Sudha, P.N. 2013. Preparation and characterization of nano chitosan for treatment wastewaters. Inter. J. Biol. Macromol. 57: 204-212.
19.Soni, U., Bajpai, J., Singh, S.K., and Bajpai, A.K. 2017. Evaluation of chitosan-carbon based biocomposite for efficient removal of phenols from aqueous solutions. J. Water Proc. Engin. 16: 56-63.
20.Taffarel, S.R., and Rubio, J. 2010. Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering. 23: 10. 771-779.
21.Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J., and Ismadji, S. 2007. Adsorption of benzene and toluene
from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry
on adsorption. J. Hazard. Mater.146: 1. 237-242.