1.Abramowitz, M., and Stegun, I.A. 1965. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1046p.
2.Ahmed, S.O., Mazloum, R., andAbou-Ali, H. 2018. Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt. J. Environ. Res. 160: 27-34.
3.Akbarzadeh, M., and Ghahraman, B. 2013. A combined strategy of entropy and spatio-temporal kriging in determining optimal network for groundwater quality monitoring of Mashhad basin. J. Water Soil. 27: 3. 613-629. (In Persian)
4.Cressie, N., and Huang, C. 1999.Classes of nonseparable, spatiotemporal stationary covariance functions. J. Am. Stat. Assoc. 94: 1330-40.
5.De Cesare, L., Myers, D., and Posa,D. 1997. Spatial-temporal modelingof SO2 in Milan district. In: E.Y. Baafi and N.A. Schofield (eds), Geostatistics Wollongong’96, 2: 1031-42. Kluwer Academic Publishers, the Netherlands, Pp: 1031-1042.
6.De Cesare, L., Myers, D.E., and Posa, D. 2001a. Estimating and modelling space- time correlation structures. Statistics and Probability Letters. 51: 1. 9-14.
7.De Cesare, L., Myers, D.E., and Posa, D. 2001b. Product–sum covariance for space-time modeling: an environmental application. Environmetrics. 12: 11-23.
8.De Iaco, S., Myers, D.E., and Posa, D. 2001. Space-time analysis using a general product-sum model. Statistics and Probability Letters. 52: 1. 21-28.
9.De Iaco, S., Myers, D.E., and Posa, D. 2002a. Space-time variograms and a functional form for total air pollution measurements. J. Comput. Stat. Data. Anal. 41: 2. 311-328.
10.De Iaco, S., Myers, D.E., and Posa, D. 2002b. Nonseparable space-time covariance models: some parametric families. J. Math Geol. 34: 23-42.
11.Dimitrakopoulos, R., and Luo, X. 1994. Spatiotemporal modeling: covariances and ordinary kriging system. In
R. Dimitrakopoulos (ed.), Geostatistics for the Next Century, P 88-93.Kluwer Academic Publishers, Dordrecht, Pp: 88-93.
12.Gräler, B., Pebesma, E., and Heuvelink, G. 2016. Spatio-Temporal Interpolation using gstat. Wp, 8: 1–20. 〈https://cran.r-project.org/web/packages/gstat/vignettes/spatio-temporalkriging.pdf〉 (last access: 25 Mar 2016).
13.Gneiting, T. 2002. Nonseparable, stationary covariance functions for space- time data. J. Am. Stat. Assoc.
97: 458. 590-600.
14.Guttorp, P., Sampson, P.D., and Newman, K. 1992. Nonparametric Estimation of Spatial Covariance with Application to Monitoring Network Evaluation, Statistics in the Environmental and Earth Sciences, Edward Arnold Press, London, Pp: 39-57.
15.Hasanalizadeh, N., Mosaedi, A., Zahiri, A.R., and Hosseinalizadeh, M. 2015. Modeling spatio-temporal variation of monthly precipitation (Case study: Golestan province). J. Water Soil Cons. 22: 1. 251-269. (In Persian)
16.Hengl, T., Heuvelink, G.B.M., Tadić, M., and Pebesma, E. 2012. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. J. Theor. Appl. Climatol. 107: 265-277.
17.Heuvelink, G.B.M., and Griffith, D.A. 2010. Space-time geostatistics for geography: A case study of radiation monitoring across parts of Germany. J. Geogr. Anal. 42: 2. 161-179.
18.Hu, D., Shu, H., Hu, H., and Xu, J. 2017. Spatiotemporal regression Kriging to predict precipitation using time- series MODIS data. J. Cluster Comput. 20: 1. 347-357.
19.Kilibarda, M., Hengl, T., Heuvelink, G.B.M., Gräler, B., Pebesma, E.,Perčec Tadić, M., and Bajat, B. 2014. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos. 119: 5. 2294-2313.
20.Mohammadzadeh, M. 2012. Spatial Statistics and Its Application. Tarbiat Modares University. Press, 416p.
(In Persian)
21.Montero, J.M., Fernández-Avilés, G., and Mateu, J. 2015. Spatial and Spatio-Temporal Geostatistical Modeling and Kriging. John Wiley & Sons, Ltd, Chichester: UK, 400p.
22.Rivaz, F., Mohammadzadeh, M., and Jafari Khaledi, M. 2007. Emperical Bayesian prediction for spatio-temporal data under a separable model. J. Stat. Sci. 1: 1. 45-59. (In Persian)
23.Rivaz, F., Mohammadzadeh, M., and Khaledi, M.J. 2011. Spatio-temporal modeling and prediction of CO concentrations in Tehran city, J. Appl. Stat. 38: 9. 1995-2007.
24.Rodríguez‐Iturbe, I., and Mejía, J.M. 1974. The design of rainfall networks in time and space. Water. Resour. Res.
10: 4. 713-728.
25.Rouhani, S., and Hall, T.J. 1989.Space-time kriging of groundwater data. In: M. Amstrong (ed.) Geostatistics: 639-51. Kluwer Academic Publishers, Dordecht. Pp: 639-651.
26.Snepvangers, J.J.J.C., Heuvelink, G.B.M., and Huisman, J.A. 2003. Soil water content interpolation using spatio-temporal kriging with external drift. J. Geoderma. 112: 253-271.
27.Stein, M.L. 2005. Statistical Methods for Regular Monitoring Data. J. Roy. Stat. Soc. B. 67: 667-687.
28.Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I. 2010. A multi-scalar drought index sensitive to global warming: the Standardized Precipition Evapotranspiration Index-SPEI. J. Clim. 23: 7. 1696-1718.