1.Aabedi, F., Mohammadzadeh, A. Mokhtarzadeh, M., and Valadan Zouj, M.J. 2015. Comparison and Evaluation of the object-based and pixel-based analysis of LiDAR and large-scale optical images in metropolitan area. J. Soft Comp. Inf. Technol. 4: 3. 118-128.
2.Akbari, D., Homayouni, S., and Seresht, M.S. 1390. Improving the accuracy of spectral detection of roofs through intelligent integration the method of target detection in ultrasound images. Iran. J. Remote Sens. GIS. 2: 97-114.(In Persian)
3.Alavi-Panah, S.K. 2012. Application of Remote Senseing in the Earth Sciences (soil). 4th Edition. Tehran: University of Tehran. 438p. (In Persian)
4.Alqurashi, A.F., Kumar, L., and Sinha, P. 2016. Urban land cover change modelling using time-series satellite images:
A case study of urban growth in five cities of Saudi Arabia, J. Rem. Sens.8: 10. 838-852.
5.Brodsky, L., and Boruvka, L. 2006. Object-oriented fuzzy analysis of remote sensing data for bare soil brightness mapping. Soil and Water Research.1: 3. 79-84.
6.Dominique, C., Christopher, D., Adam, S., Nicholas, W., and Eric, P.S.S. 2018. An Object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery-ISPRS Inter. J. Geo-Inf. ISPRS Int. J. Geo-Inf. 7: 8. 294-309.
7.Fatemi, S.B., and Rezaei, Y. 2012. Principles of remote sensing (3rd ED). Azadeh Press, Tehran, 288p. (In Persian)
8.Feyzizadeh, B., Blaschke, T., Tiede, D., and Rezaei Moghaddam. M. 2017. Evaluating fuzzy operators of anobject-based image analysis for detecting landslides and their changes. Geomorphology. 293: 240-254.
9.Feyzizadeh, B., Kazemi, S., and Sharafi, S. 1397. A Semi-Automated Approach For Identifying And Classifying Urban Distressed And Modern Area Based On Spectral And Spatial Patterns In Object-Oriented Remote Sensing: A Case Study Area Isfahan City. Human Geography Research Quarterly. 50: 3. 661-678.(In Persian)
10.Feyzizadeh, B., and Helali, H. 2009. Comparision of pixel based and object-oriented methods in vegetation/ landuse classifiation in western Azarbayejan.J. Physic. Geograph. Res. Quar.71: 1. 73-84. (In Persian)
11.Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P. 2008. Comparing landslide inventory maps. Geomorphology. 94: 3-4. 268-289.
12.Göksel, C., David, R.M., and Dogru, A.O. 2018. Environmental Monitoring of Spatio-Temporal Changes in Northern Istanbul using remote sensing and GIS. Inter. J. Environ. Geoinf.5: 1. 94-103.
13.Hölbling, D., Friedl, B., and Eisank, C. 2015. An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Science Informatics. 8: 2. 327-335.
14.Jaafari, A., Najafi, A., Pourghasemi, H.R., Rezaeian, J., and Sattarian, A. 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Inter. J. Environ. Sci. Technol. 11: 4. 909-926.
15.Lu, P., Stumpf, A., Kerle, N., and Casagli, N. 2011. Object-oriented change detection for landslide rapid mapping. Geoscience and Remote Sensing Letters, IEEE. 8: 4. 701-705.
16.Moghimi, E., Bagheri Seyedshokri, S., and Safarrad, T. 2012. Zoning of landslide hazard using entropy model (Case study: Nesar Anticline at North West Zagros). J. Physic. Geograph. Res. Quar. 44: 1. 77-90. (In Persian)
17.Moine, M., Puissant, A., and Malet, J.P. 2009. Detection of landslides fromaerial and satellite images with a semiautomatic method. Application to the Barcelonnette basin (Alpes-de-Haute-Provence, France). In: Malet,
J.P., Remaitre, A., Bogaard, T.(Eds.), Landslide Processes: From Geomorphological Mapping to Dynamic Modelling. CERG, Strasbourg, France. Pp: 63-68.
18.Moosavi, V. 2012. Application of object oriented and pixel based remote sensing methods in Barchans study. M.Sc. Dissertation. Faculty of Natural Resources and Marine Sciences. Tarbiat Modares University. 88p. (In Persian)
19.Mousavi Khatir, S.Z., Kavian, A., and Solaimani, K. 2010. Pepration of landslide susceptibility map in Sajaroud watershed using Logistic Regression model. J. Sci. Technol. Agric. Natur. Resour. Water and Soil Science.53: 3. 99-111.
20.Nohegar, A., Kazemi, M., Ahmadi, S.J., Gholami, H., and Mahdavi, R. 1395. Using pixel basis and subpixel based techniques to identify alteration zones (Case study: Tange Bostanak Region). Quantitative Geomorphological Research. 5: 1. 89-109.
21.Shadfar, S., and Yamani, M. 2007. Zoning of landslide hazard in Jelisan watershed using LNRE model. J. Physic. Geograph. Res. Quar. 62: 4. 11-23.(In Persian)
22.Tolga, M., Balcik, F.B., Şanlı, F.B., Mustafa, Ü., Kaan, K., Çiğdem, G., Cem, G., and Yusuf, K. 2018. Comparison of Object and pixel-based classifications for mapping crops using rapideye imagery: A Case Study of Menemen Plain, Turkey. Inter. J. Environ. Geoinf. 5: 2. 231-243.
23.Villa, A., Benediktsson, J.A., Chanussot, J., and Jutten, J. 2011. Hyperspectral image classification with iIndependent component discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing. 49: 12. 4865-4876.
24.Zandi, J. 2012. Prioritization of controlling area on soil erosion using RS and GIS techniques (A case study: Vzaroud watershed, Mazandaran).M.Sc. Dissertation. Faculty of Natural Resources. Sari Agricultural and Natural Resources University. 144p. (In Persian)