1.Banaei, M.H., Momeni, A., Baybordi, M.,
and Malakouti, J. 2004. Iranian Soils.
Sana Press, Tehran, Iran.
2.Bouyoucos, G.J. 1962. Hydrometer
method improved for making particle size
analysis of soils. Agron. J. 56: 464-466.
3.Bower, CA., Reitemeier, RF., and
Fireman, M. 1952. Exchangeable cation
analysis of saline and alkali soils. Soil
Science. 73: 251-261.
4.Chi, Ch.M., Zhao, Ch.W., Sun, X.J.,
and Wang, Z.C. 2011. Estimating
exchangeable sodium percentage from
sodium adsorption ratio of salt-affected
soil in The Songnen plain of Northeast
China. Soil Science Society of China
Pedosphere 21: 2. 271-276.
5.Dahiya, I.S., Richter, J., and Malik, R.S.
1984. Soil spatial variability: A review.
Inter. J. Trop. Agric. 11: 91-102.
6.Evangelou, V.P., and Marsi, M. 2003.
Influence of ionic strength on sodiumcalcium exchange of two temperate
climate soils. Plant and Soil. 250: 307-313.
7.Farahmand, A., Oustan, S.H., Jafarzadeh,
A.J., and Asgarzad, A.N. 2011. The
parameters of sodium and salinity in
some salt affected soils of the Tabriz
Plain. J of Soil and Water, 19: 2. 22. 1-15.
(In Persian)
8.Heckerman, D. 1997. Bayesian networks
for data mining. Data Mining and
Knowledge Discovery. 1: 1. 79-119.
9.Jurinak, J.J., and Suarez, D.L. 1990. The
chemistry of salt-affected soils, P 42-63.
In: Tanji, K.K. (ed). Agricultural Salinity
Assessment and Management, No, 71.
American Society of Civil Engineers,
New York, N.Y.
10.Kevin, B., and Nicholson, E. 2010.
Bayesian artificial intelligence. Second
Edition, United states. 3: 1. 370-450.
11.Lake, H.R., Akbarzadeh, A., and
Mehrjardi, R.T. 2009. Development of
pedotransfer functions (PTFs) to predict
soil physico-chemical and hydrological
characteristics in southern coastal zones
of the Caspian Sea. J. Ecol. Natur.
Environ. 1: 7. 160-172.
12.Lal, P., Chippa, B.R., and Arvind,
K. 2003. Salt affected soils and
crop production, a modern synthesis,
AGROBIS (India). Pp: 42-61.
13.Lesch, S.M., Strauss, D.J., and Rhoades,
J.D. 1995. Spatial prediction of soil
salinity using electromagnetic induction
techniques 1. Statistical prediction
models: A comparison of multiple
linear regression and cokriging. Water
Resources Research, 31: 373-386.
14.Nguyen, R.T., Prentiss, D., and Shively,
J.E. 1998. Rainfall interpolation for
Santa Barbara County. UCSB,
Department Geography. USA.
15.Rhoades, J.D. 1982. Cation exchange
capacity. P 149-157. In: Page, A.L.,
Miller, R.H. and Keeney, D.R. (eds).
Methods of Soil Analysis. Part 2. Agron.
Monogr. 9, American Society of
Agronomy, Madison, WI, USA.
16.Richards, L.A. 1954. USDA Handbook
60. U.S. Department of Agriculture,
Washington DC. USA
17.Rowell, D.L. 1994. Soil Science:
Methods and Application. Longman
Group, Harlow, England, 345p.
18.Seilsepour, M., Rashidi, M., and
Khabbaz, B.G. 2009. Prediction of soil
exchangeable sodium percentage based
on soil sodium adsorption ratio. Amer.-
Euras. J. Agric. Environ. Sci. 5: 1. 1-4.
19.Sumner, M.E. 1993. Sodic soils:
New perspectives. Austr. J. Soil Res.
31: 683-750.
20.Tamari, S., WoÈsten, J.H.M., and
Ruiz-SuaÂrez, J.C. 1996. Testing an
artificial neural network for predicting
soil hydraulic conductivity. Soil Sci.
Soc. Amer. J. 60: 1732-1741.
21.Tu, J. 2011. Spatially varying
relationships between land use and
water quality across an urbanization
gradient explored by geographically
weighted regression. Applied Geography,
31: 1. 376-392.
22.USDA. 1996. Soil Survey Laboratory
Methods Manual. Soil Survey
Investigations Republic, Washington:
United States Government Print.
23.Wagner, B., Tarnawski, V.R., Hennings,
V., Muller, U., Wessolek, G., and
Plagge, R. 2001. Evaluation of
pedotransfer function for unsaturated
soil hydraulic conductivity using
an independent data set. Geoderma.
102: 275-297.
24.Zare, M., Ordookhani, K., Emadi, A.,
and Azarpanah, A. 2014. Relationship
between soil exchangeable sodium
percentage and soil sodium adsorption
ratio in Marvdasht plain, Iran. Inter. J.
Adv. Biol. Biom. Res. 2: 12. 2934-2939