1.Abbasi, F. 2017. Advanced soil physics. Tehran university press, 320p. (In Persian)
2.Aha, D.W., Kibler, D., and Albert, M.K. 1991. Instance-based learning algorithms. Machine learning, 6: 37-66.
3.Azar, A., and Momeny, M. 2006. Statistics and its application in management (Statistical analysis). Tehran: The organization for researching and composing university textbooks in the Humanities (SAMT). 440p. (In Persian)
4.Cateni, S., Colla, V., and Vannucci, M. 2008. Outlier detection methods for industrial applications. In: Arámburo, A. and Ramírez Treviño, A. (eds), Advances in Robotics, Automation and Control. (265-282). In Tech, Vienna, Austria.
5.Debeljak, M., and Džeroski, S. 2011. Decision Trees in Ecological Modelling. In: Jopp, F., Reuter, H., Breckling, B. (eds), Modelling Complex Ecological Dynamics. (197-209). Springer, Berlin, Heidelberg.
6.Evans, D. 2002. The Gamma Test: Data-derived estimates of noise for unknown smooth models using
near-neighbour asymptotics. Doctoral thesis, Department of computer science, Cardiff university, University of Wales.
7.Ghabaei Sough, M., Masaedi, A., Hesam, M., and Hezarjaribi, A. 2010. Evaluation effect of input parameters preprocessing in Artificial Neural Networks (Anns) by using stepwise regression and Gamma test techniques for fast estimation of daily evapotranspiration. J. Water Soil. 24: 3. 610-624. (In Persian)
8.Haghverdi, A., Ghahraman, B., Khoshnood Yazdi, A.A., and Arabi, Z. 2010. Estimating of water content in FC and PWP in North and North East of Iran's soil samples using k-Nearest Neighbor and Artificial Neural Networks. J. Water Soil. 24: 4. 804-814. (In Persian)
9.Jabro, J.D. 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Transactions of the ASAE, 35: 2. 557-560.
10.Jalali, V.R., and Homaee, M. 2011. Introducing a nonparametric model using k-nearest neighbor technique for predicting soil bulk density. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science. 15: 56. 181-191. (In Persian)
11.Jones, A.J. 1998. The WinGamma user guide. University of Wales, Cardiff.
12.Kemp, S.E., Wilson, I.D., and Ware, J.A. 2005. A tutorial on the gamma test. J. Sim. Syst. Sci. Technol. 6: 1-2. 67-73.
13.Khamis, A., Ismail, Z., Haron, Kh., and Tarmizi Mohammad, A. 2005. The effects of outlier data on neural network performance. J. Appl. Sci. 5: 8. 1394-1398.
14.Khashei Siuki, A., Jalali Moakhar, V.R., Noferesti, A.M., and Ramazani, Y. 2015. Comparing nonparametric
k-nearest neighbor technique with ANN model for predicting soil saturated hydraulic conductivity. J. Soil Manage. Sust. Prod. 5: 3. 81-95. (In Persian)
15.Lall, U., and Sharma, A. 1996. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research, 32: 3. 679-693.
16.Mahdian, M.H. 2005. Soil hydraulic conductivity and its application in drainage designs. J. Agric. Engin. Res. 6: 23. 159-170. (In Persian)
17.Mallant, D., Mohanty, B.P., Vervoort, A., and Feyen, J. 1997. Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology. 10: 115-131.
18.Moghaddamnia, A., Gousheh, M.G., Piri, J., Amin, S., and Han, D. 2009. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources. 32: 1. 88-97.
19.Moncada, M.P., Gabriels, D., and Cornelis, W.M. 2014. Data-driven analysis of soil quality indicators using limited data. Geoderma. 235: 271-278.
20.Nemes, A., Rawls, W.J., and Pachepsky, Y.A. 2006. Use of the nonparametric nearest neighbor approach to estimate soil hydraulic properties. Soil Sci. Soc. Amer. J. 70: 2. 327-336.
21.Nosrati Karizak, F., Movahedi Naeni, S.A., and Hezarjaribi, A. 2012. Using Artificial Neural Networks to estimate saturated hydraulic conductivity from easily available soil properties. J. Soil Manage. Sust. Prod. 2: 1. 95-110. (In Persian)
22.Rasoulzadeh, A., Razavi, S., and Neyshoubori, R. 2012. Evaluation the accuracy of methods of estimating saturated hydraulic conductivity in different soils. J. Water Res. Agric. 26: 3. 303-316. (In Persian)
23.Schaap, M.G., Leij, F.J., and Van Genuchten, M.T. 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251: 3-4. 163-176.
24.Torabi, M. 2004. Assessment of five methods of saturated hydraulic conductivity measurement in a saline soil. 2nd Students Conference on Soil and Water Resources. University of Shiraz. (In Persian)
25.Wang, Y., and Witten, I.H. 1997. Inducing model trees for continuous classes. In Proceedings of the Ninth European Conference on Machine Learning. Pp: 128-137.