1.Ahmad, M., Ok, Y.S., Kim, B.Y., Ahn, J.H., Lee, Y.H., Zhang, M., Moon, D.H., Al-Wabel, M.I., and Lee, S.S. 2016. Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J. Environ. Manage. 166: 131-139.
2.Al-Farraj, A.S., Al-Wabel, M.I., Al-Shahrani, T.S., El-Maghraby, S.E., and AlSewailem, M.A.S. 2010. Accumulation coefficient and translocation factor of heavy metals through Rhazya stricta grown in the mining area of Mahad AD'Dahab, Saudi Arabia. WIT Transactions on Ecology and the Environment. 140: 325-336.
3.Ali, A., Guo, D., Zhang, Y., Sun, X., Jiang, S., Guo, Z., Huang, H., Liang, W., Li, R., and Zhang, Z. 2017. Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Sci. Rep. 7. article number 2690.
4.Archanjo, B.S., Mendoza, M.E., Albu, M., Mitchell, D.R., Hagemann, N., Mayrhofer, C., Mai, T.L.A., Weng, Z., Kappler, A., Behrens, S., and Munroe, P. 2017. Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma. 294: 70-79.
5.Bade, R., Oh, S., and Shin, W.S. 2012. Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotox. Environ. Safe. 80: 299-307.
6.Bonanno, G. 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety. 74: 4. 1057-1064.
7.Bonanno, G., and Giudice, R.L. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 10: 639-645.
8.Brennan, A., Jiménez, E.M., Alburquerque, J.A., Knapp, C.W., and Switzer, C. 2014. Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environ. Pollut. 193: 79-87.
9.Brunauer, S., Emmett, P.H., and Teller, E. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60: 2. 309-319.
10.Cheng, J., Li, Y., Gao, W., Chen, Y., Pan, W., Lee, X., and Tang, Y. 2018. Effects of biochar on Cd and Pb mobility and microbial community composition in a calcareous soil planted with tobacco. Biol. Fertil. Soils.
54: 3. 373-383.
11.Eid E.M., and Shaltout K.H. 2016. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dumpsite. Int. J. Phytoremediation. 18: 11. 1075-1085.
12.Eid, E.M., and Shaltout, K.H. 2014. Monthly variations of trace elements accumulation and distribution in
above-and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in LakeBurullus (Egypt): a biomonitoring application. Ecol. Eng. 73: 17-25.
13.Gee, G.W., and Bauder, J.W. 1986. Particle size analysis. P 475-490. In: Klute A. (ed.) Methods of Soil Analysis. Part l. 2nd edition. Agron. Monogr. 9. ASA and SSSA, Madison, Wisconsin.
14.Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V., and Deng, H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric. Ecosyst. Environ. 206: 46-59.
16.Hutzinger, O. 1980. The Handbook of Environmental Chemistry. Springer. New York. 434p.
17.Kabata-Pendias, A., and Pendias, H. 2001. Trace Elements in Soils and Plants. Third Ed. CRC Press. Boca Raton, London. 331p.
18.Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N.W., and Beesley, L. 2011. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 191: 1-3. 41-48.
19.Khalid, N., Hussain, M., Young, H.S., Ashraf, M., Hameed, M., and Ahmad, R. 2018. Lead concentrations in soils and some wild plant species along two busy roads in Pakistan. Bull Environ. Contam. Toxicol. 100: 2. 250-258.
20.Kim, H.S., Kim, K.R., Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G., and Kim, K.H. 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth. Sci. 74: 2. 1249-1259.
21.Krzesłowska, M. 2011. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta. Physiol. Plant. 33: 1. 35-51.
22.Kumar, A., Tsechansky, L., Lew, B., Raveh, E., Frenkel, O., and Graber, E.R. 2018. Biochar alleviates phytotoxicity in Ficus elastica grown in Zn-contaminated soil. Sci. Total. Environ. 618: 188-198.
23.Leoppert, R.H., and Suarez, D.L. I996. Carbonate and gypsum. P 437-447. In: Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
24.Li, H., Liu, Y., Chen, Y., Wang, S., Wang, M., Xie, T., and Wang, G. 2016. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Sci. Rep. 6. article number. 31616.
25.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil. Sci. Soc. Am. J. 42: 421-428.
26.Lone, M.I., He, Z.L., Stoffella, P.J., and Yang, X.E. 2008. Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J. Zhejiang. Univ. Sci. B. 9: 3. 210-220.
27.Lwin, C.S., Seo, B.H., Kim, H.U., Owens, G., and Kim, K.R. 2018. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality-a critical review. J. Soil. Sci. Plant. Nutr. 64: 2. 156-167.
28.Magaji, Y., Ajibade, G.A., Yilwa, V.M.Y., Appah, J., Haroun, A.A., Alhaji, I., Namadi, M.M., and Sodimu, A.I. 2018. Concentration of heavy metals in the soil and translocation with phytoremediation potential by plant species in military shooting range. World Scientific News. 92: 2. 260-271.
29.Małecka, A., Piechalak, A., Morkunas, I., and Tomaszewska, B. 2008. Accumulation of lead in root cells of Pisum sativum. Acta. Physiol. Plant. 30: 5. 629-637.
30.Marques, A.P., Oliveira, R.S., Rangel, A.O., and Castro, P.M. 2008. Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environ. Pollut. 151: 3. 608-620.
31.McCann, C.M., Gray, N.D., Tourney, J., Davenport, R.J., Wade, M., Finlay, N., Hudson-Edwards, K.A., and Johnson, K.L. 2015. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste. Chemosphere. 138: 211-217.
32.Nelson, D.W., and Sommers, L.E. 1996. Carbon, organic carbon and organic matter. P 961-1010. In Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
33.Nikolaidis, C., Zafiriadis, I., Mathioudakis, V., and Constantinidis, T. 2010. Heavy metal pollution associated with an abandoned lead–zinc mine in the Kirki Region, NEGreece. Bull Environ. Contam. Toxicol. 85: 307-312.
34.O'Connor, D., Peng, T., Zhang, J., Tsang, D.C., Alessi, D.S., Shen, Z., Bolan, N.S., and Hou, D. 2018. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of The Total Environment. 619: 815-826.
35.Ogundiran, M.B., Lawal, O.O., and Adejumo, S.A. 2015. Stabilisation of Pb in Pb smelting slag-contaminated soil by compost-modified biochars and their effects on maize plant growth. J. Environ Prot. 6: 8. 771-780.
36.Park, J.H., Choppala, G., Lee, S.J., Bolan, N., Chung, J.W., and Edraki, M. 2013. Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air, and Soil Pollution. 224: 12. 1711-1721.
37.Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W., and Chuasavathi, T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant. Soil. 348: 1-2. 439-451
38.Pelloux, J., Rusterucci, C., and Mellerowicz, E.J. 2007. New insights into pectin methylesterase structure and function. Trends. Plant. Sci. 12: 6. 267-277.
39.Qin, P., Wang, H., Yang, X., He, L., Müller, K., Shaheen, S.M., Xu, S., Rinklebe, J., Tsang, D.C., Ok, Y.S., and Bolan, N. 2018. Bamboo-and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere. 198: 450-459.
40. Rhoades J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. P 417-435. In: Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
41.Ruiz, E., Alonso-Azcárate, J., Rodríguez, L., and Rincón, J. 2009. Assessment of metal availability in soils from a Pb-Zn mine site of South-Central Spain. Soil Sediment Contam. 18: 5. 619-641.
42.Ryan, J.A., Scheckel, K.G., Berti, W.R., Brown, S.L., Casteel, S.W., Chaney, R.L., Hallfrisch, J., Doolan, M., Grevatt, P., Maddaloni, M., and Mosby, D. 2004. Peer reviewed: reducing children's risk from lead in soil. Environ. Sci. Technol. 38: 1. 18-24.
43.Sarwar, N., Imran, M., Shaheen, M.R., Ishaque, W., Kamran, M.A., Matloob, A., Rehim, A., and Hussain, S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 171: 710-721.
44.Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., and Dumat, C. 2011. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol. Environ. Saf. 74: 1. 78-84.
45.Sposito, G., Lund, L.J., and chang, A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc. Am. J. 46: 260-265.
46.Sumner, M.E., and Miller, P.M. 1996. Cation exchange capacity and exchange coefficient. P 1201-1230. In Sparks D.L. (ed.) Methods of Soil Analysis. SSSA. Madison.
47.Susarla, S., Medina, V.F., and McCutcheon, S.C. 2002. Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng.18: 5. 647-658.
48.Taskila, S., Tuomola, M., and Ojamo, H. 2012. Enrichment cultivation in detection of food-borne Salmonella. Food Control. 26: 2. 369-377.
49.Thomas, G.W. 1996. Soil pH and soil acidity. In: Sparks D.L. (ed.). Methods of Soil Analysis. SSSA, Madison. 1309p.
50.Udeigwe, T.K., Eze, P.N., Teboh, J.M., and Stietiya, M.H. 2011. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Environ. Int. 37: 1. 258-267.
51.Verbruggen, N., Hermans, C., and Schat, H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181: 4. 759-776.
52.Verkleij, J.A.C., and Schat, H. 1990. Mechanisms of metal tolerance in higher plants (Vol. 95). CRC Press, Boca Raton, FL.
53.Weis, J.S., Glover, T., and Weis, P. 2004. Interactions of metals affect their distribution in tissues of Phragmites australis. Environ. Pollut. 131: 3. 409-415.
54. Yathavakulasingam, T., Mikunthan, T., and Vithanage, M. 2016. Acceleration of Lead Phytostabilization by Maize (Zea mays) in Association with Gliricidiasepium Biomass. Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka. 2: 5. 16-21.