Simulation of Nitrate and Ammonium Ions Leaching in a Sandy Loam Soil using Analytical and Numerical Models

Document Type : Complete scientific research article

Authors

1 Designer and supervisor/ Goharab Kalar Consulting engineers

2 استاد دانشگاه شهید چمران اهواز

3 Ph.D Candidate of Irrigation & Drainage Engineering. Faculty of Water Sciences Engineering, Shahid Chamran University, Ahvaz, Iran.

Abstract

Abstract
Background and objectives: Industrial and agricultural activities may result in aquifer pollution. Nitrogen fertilizer is widely used in agricultural activities. Nitrate ion with negative charge is not absorbed by soil particles; therefore, it is subjected to surface and ground water leaching which is more intensive in sandy loam. Analytical and numerical models applied to investigate nitrate transport between soil and groundwater and its effect on groundwater contamination. For using these models, dispersion, and retardation factors are required. Therefore, quantitative estimation of these factors for solving the problems related to solute and metal transport in the soil, is necessary. The parameters were estimated by comparing laboratory and field data versus theoretical ones. The objective of this study is to determine dispersion and retardation factors of nitrate and ammonium ions with three different methods including breakthrough curve (BTC), least square, and Hydrus models in a saturated sandy loam soil.
Materials and Methods: The study was conducted in the soil columns of  centimeter and  diameter with three replications. Before leaching, ammonium nitrate fertilizer is added to soil columns with concentration of g per liter. Concentration of nitrate and ammonium in leached water at the end of soil column with time, commonly known as the breakthrough curve (BTC), is determined. BTC as the first method, resulting from a step input of solute is often of sigmoidal shape and the dispersion and retardation factors are determined with this curve. The second method is least square one. In this method an error function model that fits to a breakthrough curve is presented with two unknown parameters. The parameters can be estimated by using laboratory data and a least square method. The last method is Hydrus model. In Hydrus model, the convection-dispersion and mobile-immobile models through inverse modeling were used to estimate the parameters.
Results: Dispersion and retardation factors for nitrate ion were in the range of  and  and for ammonium ion were in in the range of , and  respectively.
Conclusions: For quick and accurate estimation of dispersion and retardation factors from a soil column data, three methods are discussed. All of the models discussed in this study, have approximately the same result in estimating dispersion and retardation factors. Dispersion and retardation factors of nitrate ion was higher than ammonium ion showing nitrate ion was absorbed to soil particles more than ammonium ion which consequently leads to less hazard of leaching to the groundwater.

Keywords


1.Adepelumi, A.A., Ako, B., Ajayi, T., Afolabi, O., and Omotoso, E. 2009. Delineation of saltwater intrusion into the freshwater aquifer of LekkiPeninsula, Lagos, Nigeria. Environmental Geology. 56: 5. 927-933.
2.Anayah, F.M., and Almasri, M.N. 2009. Trends and occurrences of nitrate in the groundwater of the West Bank, Palestine. Applied Geography. 29: 4. 588-601.
3.Andre, L., Franceschi, M., Pouchan, P., and Atteia, O. 2005. Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J. Hydrol. 305: 1. 40-62.
4.Apha, A. 1998. Wpcf. Standard methods for the examination of water and wastewater 20.
5.Asghari Moghaddam, A., Nadiri, A.A., and Fijani, E. 2007. Spatial prediction of fluoride concentration using artificial neural networks and geostatic models. J. Sci. Water Soil.
J. 19/1. 129-145. (In Persian)
6.Chebotarev, I. 1955. Metamorphism of natural waters in the crust of weathering-1. Geochimica et Cosmochimica Acta. 8: 1. 22-48.
7.Davis, J.C. 1986. Statistical and data analysis in geology, J. Wiley.
8.Durov, S. 1948. Natural waters and graphic representation of their composition. Dokl Akad Nauk SSSR.
9.Güler, C., Thyne, G.D., McCray, J.E., and Turner, K.A. 2002. Evaluation of graphical
and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 10: 4. 455-474.
10.Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M., and Fernandez, L. 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water research. 34: 3. 807-816.
11.Hossain, G., Howladar, M.F., Nessa, L., Ahmed, S.S., and Quamruzzaman, C. 2010. Hydrochemistry and classification of groundwater resources of Ishwardi Municipal Area, Pabna District, Bangladesh. Geotechnical and Geological Engineering. 28: 671-9.
12.Hounslow, A. 1995. Water quality data: analysis and interpretation, CRC press.
 13.Kaiser, H.F. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika. 23: 3. 187-200.
14.Kaiser, H.F. 1974. An index of factorial simplicity. Psychometrika. 39: 1. 31-36.
15.Love, D., Hallbauer, D., Amos, A., and Hranova, R. 2004. Factor analysis as a tool in groundwater quality management: two southern African case studies. Physics and Chemistry of the Earth, Parts A/B/C. 29: 15. 1135-1143.
16.McNeil, V.H., Cox, M.E., and Preda, M. 2005. Assessment of chemical water types and
their spatial variation using multi-stage cluster analysis, Queensland, Australia. J. Hydrol. 310: 1. 181-200.
17.Moghaddam, A.A., and Fijani, E. 2009. Hydrogeologic framework of the Maku area basalts, northwestern Iran. Hydrogeol. J. 17: 4. 949-959. (In Persian)
18.Nadiri, A.A., Moghaddam, A.A., Tsai, F.T., and Fijani, E. 2013. Hydrogeochemical analysis for Tasuj plain aquifer, Iran. J. Earth Syst. Sci. 122: 4. 1091-1105.
19.Noori, R., Sabahi, M.S., Karbassi, A., Baghvand, A., and Zadeh, H.T. 2010. Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination. 260: 1. 129-136.
20.Oudouris, K., Panagopoulos, A., and Koumantakis, J. 2000. Multivariate statistical analysis in the assessment of hydrochemistry of the Northern Korinthia prefecture alluvial aquifer system (Peloponnese, Greece). Natural Resources Research. 9: 2. 135-146.
21.Piper, A.M. 1944. A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union. 25: 914-928.
22.Pourakbar, M., Mosaferi, M., Shaker Khatibi, M., and Moradi, A. 2014. Groundwater quality assessment from a hydrogeochemical viewpoint a case Study of Sarab County. Adviser engineer of project and investigations of water and wastewater. 26: 3. 116-126. (In Persian)
23.Prasanna, M.V., Chidambaram, S., Hameed, A.S., and Srinivasamoorthy, K. 2011. Hydrogeochemical analysis and evaluation of groundwater quality in the Gadilam river basin, Tamil Nadu, India. J. Earth Syst. Sci. 120: 1. 85-98.
24.Prasanna, M.V., Chidambaram, S., and Srinivasamoorthy, K. 2010. Statistical analysis of the hydrogeochemical evolution of groundwater in hard and sedimentary aquifers system of Gadilam river basin, South India. J. King Saud Univ. - Sci. 22: 3. 133-145.
25.Shahrabi, M. 1994. Report of geological map of Quadrilateral Urmia with scale 250000/1. Geological Survey and mining Exploration. (In Persian)
26.Shanmugam, P., and Ambujam, N. 2012. A hydrochemical and geological investigation on the Mambakkam mini watershed, Kancheepuram District, Tamil Nadu. Environmental monitoring and assessment. 184: 5. 3293-3306.
27.Singh, K.P., Malik, A., Mohan, D., and Sinha, S. 2004. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of GomtiRiver (India)-a case study. Water Research. 38: 18. 3980-3992.
28.Singhal, B., and Gupta, R. 1999. Applied Hydrogeology of Fractured Rocks. Kluwer Academic Publishers, Dordrecht, the Netherlands.
29.Tabachnick, B.G., and Fidell, L.S. 2001. Using multivariate statistics.
30.Todd, D.K., and Mays, L.W. 2005. Groundwater Hydrology. Wiley, New Jersey.
31.Vega, M., Pardo, R., Barrado, E., and Debán, L. 1998. Assessment of seasonal and
polluting effects on the quality of river water by exploratory data analysis. Water research. 32: 12. 3581-3592.