1.http://water.usgs.gov/edu/watercycle.html. The Water Cycle - USGS Water Science School. United States Geological Survey (USGS).
2.Hassani Pak, A.A. 2008. Geostatistics. Tehran University, Tehran, Iran, 314p.
3.Liu, S., Mo, X., Li, H., Peng, G., and Robock, A. 2001. Spatial Variation of Soil Moisture in China: Geostatistical Characterization. J. Meteorol. Soc. Japan. 79: 1B. 555-574.
4.Sharma, M.L., Gander, G.A., and Hunt, C.G. 1980. Spatial variability of infiltration in a watershed. J. Hydrol. 45: 1-2. 101-122.
5.Sun, W., and McBratney, A. 2012. Analysis and prediction of soil properties using local regression-kriging. Geoderma. 171: 1. 16-23.
6.Cheng, K.-S., Wei, C., Cheng, Y.-B., and Yeh, H.-C. 2003. Effect of spatial variation characteristics on contouring of design storm depth. Hydrological Processes. 17: 9. 1755-1769.
7.Pardo-Igúzquiza, E. 1998. Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. J. Hydrol. 210: 1-4. 206-220.
8.Kebaili Bargaoui, Z., and Chebbi, A. 2009. Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol. 365: 1-2. 56-73.
9.Asakereh, H. 2008. Kriging Application in Climatic Element Interpolation, A Case Study: Iran Precipitation. Geograph. Dev. Iran. J. 6: 12. 25-42. (In Persian)
10.Tsintikidis, D., Georgakakos, K.P., Sperfslage, J.A., Smith, D.E., and Carpenter, T.M. 2002. Precipitation Uncertainty and Raingauge Network Design within Folsom Lake Watershed.
J. Hydrol. Engin. 7: 2. 175-184.
11.Barca, E., and Passarella, G. 2008. Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation. Environmental Monitoring and Assessment. 137: 1-3. 261-273.
12.Barca, E., Bruno, D.E., and Passarella, G. 2016. Optimal redesign of environmental monitoring networks by using software MSANOS. Environmental Earth Sciences. 75: 14. 1082.
13.Ghahraman, B., Hosseini, S.M., and Asgari, H.R. 2003. Use of Geostatistics in Evaluation of Groundwater Quality Monitoring Network. Amirkabir J. Sci. Res. 30: 1. 971-981. (In Persian)
14.Karamouz, M., Kerachian, R., Akhbari, M., and Hafez, B. 2009. Design of River Water Quality Monitoring Networks: A Case Study. Environmental Modeling and Assessment.
14: 6. 705-714.
15.Ben-Jemaa, F., and Mariño, M.A. 1990. Optimization of a Groundwater Well Monitoring Network. Optimizing the Resources for Water Management, Proceeding Paper, American Society of civil Engineers (ASCE), Pp: 610-614.
16.Prakash, M.R., and Singh, V.S. 2000. Network design for groundwater monitoring - a case study. Environmental Geology. 39: 6. 628-632.
17.Kumar, V., and Remadevi. 2006. Kriging of Groundwater Levels – A Case Study. J. Spatial Hydrol. 6: 1. 12.
18.Nikroo, L., Kompani-Zare, M., Sepaskhah, A.R., and Fallah Shamsi, S.R. 2010. Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Environmental Monitoring and Assessment. 166: 1-4. 387-407.
19.Noori, S.M., Ebrahimi, K., Liaghat, A.M., and Hoorfar, A.H. 2013. Comparison of different geostatistical methods to estimate groundwater level at different climatic periods. Water Environ. J. 27: 1. 10-19.
20.Zamani, R., Akhondali, A.M., Zarei, H., and Radmanesh, F. 2014. Estimation of the groundwate level by using a combined optimized method with Genetic Algorithms in Ramhormoz plain. Irrig. Water J. 4: 15. 26-38. (In Persian)
21.Mirzaei, N., Maroofpour, S., and Dinpashoh, Y. 2016. Estimation of the Groundwater Level using the Geostatistics; Case Study Tabriz plain. 5th Comprehensive Water Resources Management Conference, Pp: 1-9. (In Persian)
22.Zamani, R., Akhond-Ali, A.M., and Zarei, H. 2017. An application of combined geostatistics with optimized artificial neural network bygenetic algorithm in estimation of groundwater Level (Case study: Dezful and Zeidoon plains). Irrigation Sciences and Engineering.
40: 2. 27-37. (In Persian)
23.Kord, K. 2017. Modeling of groundwater level fluctuations in Interaction with Dez river. M.Sc. Thesis, Khoramshahr Marine Science and Technology University, Khoramshahr, Iran, 86p. (In Persian)
24.Lee, Y.-M., and Ellis, J.H. 1996. Comparison of Algorithms for Nonlinear Integer Optimization: Application to Monitoring Network Design. J. Environ. Engin. 122: 6. 524-531.
25.Nunes, L.M., Cunha, M.C., and Ribeiro, L. 2004. Groundwater Monitoring Network Optimization with Redundancy Reduction. J. Water Resour. Plan. Manage. 130: 1. 33-43.
26.Safari, M. 2002. Determination of Optimal Groundwater Piezometric Network Using Geostatistics Methods. M.Sc. Thesis, Tarbiyat Modares University, Tehran, Iran, 135p.
(In Persian)
27.Dehghani, A.A., Asgari, M., and Mosaedi, A. 2009. Comparision of Geostatistics, Artifitial Neural Networks and Adaptive Neuro-Fuzzy Inference System Approaches in Groundwater Level Interpolation, Case study: Ghazvin Aquifer. J. Agric. Sci. Natur. Resour. 16: 1-b. 517-529.
28.Nikroo, L., Kompani-Zare, M., and Sepaskhah, A.R. 2009. Optimization of groundwater level measuring network using geostatistics, A case study: Mohr basin in Fars Province. 3th Iranian Water Resources Management Conference, Tabriz, Iran, Pp: 1-9. (In Persian)
29.Ganji Khoramdel, N., Keykhaei, F., Mohammadi, K., and Monem, M.J. 2015. Optimization of Groundwater Elevation Monitoring Network Using Particle Swarm Optimization Technique. J. Hydr. 3: 1. 25-35. (In Persian)
30.Mirzaie-Nodoushan, F., Bozorg-Haddad, O., and Loaíciga, H.A. 2017. Optimal design of groundwater-level monitoring networks. J. Hydroinf. 19: 6. 920-929.
31.Glover, F. 1990. Tabu search: A tutorial. Interfaces. 20: 4. 74-94.