Numerical solution of water hammer phenomenon by Collocated Discrete Least Squares method

Document Type : Complete scientific research article

Authors

1 water-Civil Engineering-University of Technology of shahrood- shahrood-Iran

2 Civil-Shahrood

3 Golestan Univ.

4 Mechanic Univ. Shahrood

Abstract

Abstract
“Water hammer” is one of the phenomena that causes damage in the pipe system and reduces their useful life. Various numerical methods have been used to analyze this problem. In all numerical methods, for calculating the variables that are the velocity and pressure values due to the sudden discontinuity of the flow and motion of the pressure wave along the pipe, the continuum environment of the problem must be discretized in some way. With calculating these aberrations before designing of the structures accurately, appropriate measures can be taken to reduce tensions caused by the water-hammer phenomenon.

Background and objectives

The conventional method to numerically solve the differential equations that describe this phenomenon is the method of characteristic lines. In general, in conventional methods where have been developed correctly, such as finite element, finite volume and finite difference, discretization of the spatial domain of the problem is done by gridding. Despite the useful use of these methods in many scientific fields, gridding is a costly and troublesome process, especially on problems with complex boundaries. That is the main motive for the creation of meshless methods. In these methods, the spatial domain of the problem is simply discretized by a number of points.
Materials and methods
In the present study, for modeling classical water-hammer in a system including valve, pipe and reservoir, a collocated discrete least squares method is used. In the proposed approach implicit Crank-Nicolson method for time discretization is used to provide conditions for problem solving stability. In this method, the velocity and pressure values on the x-t plane are calculated directly from the previous time step simultaneously. This method is quite matrix and the solution process is accomplished including several simple algebraic operations on matrices.
Results
In this study, at first this numerical method is described generally then governing equations are calculated and several experiments on water hammer in the form of the problem have been modeled by this method, also the hydraulic analysis of problems and calculation steps for calculating accurate answers are fully described and the results are verified with exact answers and other numerical methods such as MOC method and numerical method used by “Zielk” and the computational average error was estimated to be less than 5% by total squared error criterion. So this method can be considered as a precise, simple, and low-cost numerical method for modeling of water-hammer phenomena.
Conclusion
Important properties of the Meshless numerical method included no need to integrate, complete mathematical math operations and meshless space makes it one of the most accurate methods for numerical solution of water hammer phenomenon in the pipe system.

Keywords


1.Afshar, M.H., and Lashckarbolok, M. 2008. Collocated discrete least-squares (CDLS) meshless method: Error estimate and adaptive refinement. Numerical Methods in Fluids J. 56: 10. 1909-1928.
2.Afshar, M.H., Amani, J., and Naisipour, M. 2012. A node enrichment adaptive refinement in Discrete Least Squares Meshless method for solution of elasticity problems. Eng. Anal. Bound. Elem. J. 36: 3. 385-393.
3.Arzani, H., and Afshar, M.H. 2006. Solving Poisson’s equations by the discrete least square meshless method. WIT Trans. Model. Simul. J. 42: 5. 23-32.
4.Atluri, S.N., and Zhu, T. 1998. A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Computational Mechanics. 22: 2. 117-127.
5.Babuska, I., and Melenk, J. 1995. The partition of unity finite element method. Technical report technical note BN-1185. Institute for Physical Science and Technology. University of Maryland.
6.Belytschko, T., Lu, Y.Y., and Gu, L. 1994. Element-free Galerkin method. Inter. J. Num. Method. Engin. 37: 2. 229-256.
7.Bergant, A., Hou, Q., Keramat, A., and Tijsseling, A. 2011. Experimental and numerical analysis of water hammer in a large-scale PVC pipeline apparatus. P 27-36, 4th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Belgrade, Serbia.
8.Bruce, E., Larock, Roland W. Jeppson and Gary Z. Watters. 2000. Hydraulics of Pipeline Systems. CRC Press, Pp: 283-380.
9.Daneshfaraz, R., Sadeqfam S., and Majedi Asl, M. 2011. The effect of non-linear terms on the process of computing water hammer with regard to friction coefficients for different cast iron pipe. Inter. J. Engin. Appl. Sci. (IJEAS). 3: 3. 15-22.
10.Dilts, G.A. 1999. Moving least-squares-particle hydrodynamic – I. Consistency and stability. Inter. J. Num. Method. Engin. 44: 8. 1115-1155.
11.Duarte, C.A., and Oden, J.T. 1996. An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering. 12: 6. 673-705.
12.Gingold, R.A., and Moraghan, J.J. 1977. Smooth particle hydrodynamics: theory and application to non pherical stars. Man. Not. Roy. Astron. Soc. 181: 3. 375-389.
13.Holmboe E.L., and Rouleau W.T. 1967. The effect of viscous shear on transients in liquid lines, Basic Eng. J. 89: 1. 174-180.
14.Korbar, R., Virag, Z., and Šavar, M. 2014. Truncated method of characteristics for quasi-two- dimensional water hammer model. Hydraul. Eng. J. 140: 6. 04014013-1: 04014013-7.
15.Liu, W.K., Li, S., Adee, J., and Belytschko, T. 1995. Reproducing kernel particle Methods. Inter. J. Num. Method. Engin. 20: 8-9. 1081-1106.
16.Liu, G.R., and Tu, Z.H. 2002. An adaptive procedure based on background cells for meshless methods.  Comput. Methods Appl. Mech. Engrg. J. 191: 17-18. 1923-1943.
17.Nathan, G.K., Tan, J.K., and Ng, K.C. 1988. Two dimensional analysis of pressure transients in pipelines, Num. Method. Fluid. J. 8: 5. 339-349.
18.Nayroles, B., Touzot, G., and Villon, P. 1992. Generalizing the finite element method diffuse approximation and diffuse element. Computational Mechanics. 10: 5. 307-318.
19.Onate, E., Idelsohn, S., Zienkiewicz, O.C., and Taylor, R.L. 1996. A finite point method in computational mechanics. Applications to convective transport and fluid flow. Inter. J. Num. Method. Engin. 36: 22. 3839-3866.
20.Saikia, M., and Sarma, A.K. 2006. Simulation of water hammer flows with unsteady friction factor. J. Engin. Appl. Sci. 1: 4. 35-40.
21.Shamloo, H., Norooz, R., and Mousavifard, M. 2015. A review of one-dimensional unsteady friction models for transient pipe flow. P 2278-2288, The second national conference on applied research in science and technology, Faculty of Science, Cumhuriyet University.
22.Tijsseling, S., and Bergant, A. 2007. Meshless computation of water hammer. P 65-77, 2nd IAHR International meeting of the workgroup on cavitation and dynamic problems in hydraulic machinery and systems. Timisoara, Romania.
23.Wahba, E.M. 2006. Runge–Kutta time-stepping schemes with TVD central differencing for the water hammer equations. Int. J. Num. Method. Fluid. 52: 5. 571-590.
24.Wahba, E.M. 2008. Modelling the attenuation of laminar fluid transients in piping systems. Appl. Math. Model J. 32: 12. 2863-2871.
25.Wahba, E.M. 2013. Non-Newtonian fluid hammer in elastic circular pipes: Shear-thinning and shear-thickening effects. Non-Newtonian Fluid Mech. J. 198: 10. 24-30.
26.Whilie, E.B., and Streeter, V.L. 1978. Fluid Transient, McGraw Hill, United states of America, Pp: 379-420.
27.Zanganeh, R., Ahmadi, A., and Keramat, A. 2014. Fluid–structure interaction with viscoelastic supports during waterhammer ina pipeline. J. Fluid. Structure. 54: 6. 215-234.
28.Zielke, W. 1968. Frequency- Dependent Friction in Transient Pipe flow. Basic Eng. J.
90: 1. 109-115.