1.Afshar, M.H., and Lashckarbolok, M. 2008. Collocated discrete least-squares (CDLS) meshless method: Error estimate and adaptive refinement. Numerical Methods in Fluids J. 56: 10. 1909-1928.
3.Arzani, H., and Afshar, M.H. 2006. Solving Poisson’s equations by the discrete least square meshless method. WIT Trans. Model. Simul. J. 42: 5. 23-32.
4.Atluri, S.N., and Zhu, T. 1998. A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Computational Mechanics. 22: 2. 117-127.
5.Babuska, I., and Melenk, J. 1995. The partition of unity finite element method. Technical report technical note BN-1185. Institute for Physical Science and Technology. University of Maryland.
6.Belytschko, T., Lu, Y.Y., and Gu, L. 1994. Element-free Galerkin method. Inter. J. Num. Method. Engin. 37: 2. 229-256.
7.Bergant, A., Hou, Q., Keramat, A., and Tijsseling, A. 2011. Experimental and numerical analysis of water hammer in a large-scale PVC pipeline apparatus. P 27-36, 4^{th} International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Belgrade, Serbia.
8.Bruce, E., Larock, Roland W. Jeppson and Gary Z. Watters. 2000. Hydraulics of Pipeline Systems. CRC Press, Pp: 283-380.
9.Daneshfaraz, R., Sadeqfam S., and Majedi Asl, M. 2011. The effect of non-linear terms on the process of computing water hammer with regard to friction coefficients for different cast iron pipe. Inter. J. Engin. Appl. Sci. (IJEAS). 3: 3. 15-22.
10.Dilts, G.A. 1999. Moving least-squares-particle hydrodynamic – I. Consistency and stability. Inter. J. Num. Method. Engin. 44: 8. 1115-1155.
11.Duarte, C.A., and Oden, J.T. 1996. An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering. 12: 6. 673-705.
12.Gingold, R.A., and Moraghan, J.J. 1977. Smooth particle hydrodynamics: theory and application to non pherical stars. Man. Not. Roy. Astron. Soc. 181: 3. 375-389.
13.Holmboe E.L., and Rouleau W.T. 1967. The effect of viscous shear on transients in liquid lines, Basic Eng. J. 89: 1. 174-180.
14.Korbar, R., Virag, Z., and Šavar, M. 2014. Truncated method of characteristics for quasi-two- dimensional water hammer model. Hydraul. Eng. J. 140: 6. 04014013-1: 04014013-7.
15.Liu, W.K., Li, S., Adee, J., and Belytschko, T. 1995. Reproducing kernel particle Methods. Inter. J. Num. Method. Engin. 20: 8-9. 1081-1106.
16.Liu, G.R., and Tu, Z.H. 2002. An adaptive procedure based on background cells for meshless methods. Comput. Methods Appl. Mech. Engrg. J. 191: 17-18. 1923-1943.
17.Nathan, G.K., Tan, J.K., and Ng, K.C. 1988. Two dimensional analysis of pressure transients in pipelines, Num. Method. Fluid. J. 8: 5. 339-349.
18.Nayroles, B., Touzot, G., and Villon, P. 1992. Generalizing the finite element method diffuse approximation and diffuse element. Computational Mechanics. 10: 5. 307-318.
19.Onate, E., Idelsohn, S., Zienkiewicz, O.C., and Taylor, R.L. 1996. A finite point method in computational mechanics. Applications to convective transport and fluid flow. Inter. J. Num. Method. Engin. 36: 22. 3839-3866.
20.Saikia, M., and Sarma, A.K. 2006. Simulation of water hammer flows with unsteady friction factor. J. Engin. Appl. Sci. 1: 4. 35-40.
21.Shamloo, H., Norooz, R., and Mousavifard, M. 2015. A review of one-dimensional unsteady friction models for transient pipe flow. P 2278-2288, The second national conference on applied research in science and technology, Faculty of Science, Cumhuriyet University.
22.Tijsseling, S., and Bergant, A. 2007. Meshless computation of water hammer. P 65-77, 2^{nd} IAHR International meeting of the workgroup on cavitation and dynamic problems in hydraulic machinery and systems. Timisoara, Romania.
23.Wahba, E.M. 2006. Runge–Kutta time-stepping schemes with TVD central differencing for the water hammer equations. Int. J. Num. Method. Fluid. 52: 5. 571-590.
24.Wahba, E.M. 2008. Modelling the attenuation of laminar fluid transients in piping systems. Appl. Math. Model J. 32: 12. 2863-2871.
25.Wahba, E.M. 2013. Non-Newtonian fluid hammer in elastic circular pipes: Shear-thinning and shear-thickening effects. Non-Newtonian Fluid Mech. J. 198: 10. 24-30.
26.Whilie, E.B., and Streeter, V.L. 1978. Fluid Transient, McGraw Hill, United states of America, Pp: 379-420.
27.Zanganeh, R., Ahmadi, A., and Keramat, A. 2014. Fluid–structure interaction with viscoelastic supports during waterhammer ina pipeline. J. Fluid. Structure. 54: 6. 215-234.
28.Zielke, W. 1968. Frequency- Dependent Friction in Transient Pipe flow. Basic Eng. J.
90: 1. 109-115.