1.Firat, M. 2008. Comparison of artificial intelligence techniques for river flow forecasting. Hydrology and Earth System Sciences Discussions. 12: 1. 123-39.
2.Khalili, K., and Nazeri Tahroudi, M. 2016. Performance evaluation of ARMA and CARMA models in modeling annual precipitation of Urmia synoptic station. J. Water Soil Sci.
26: 2-1. 13-28. (In Persian)
3.Moeeni, H., Bonakdari, H., Fatemi, S.E., and Ebtehaj, E. 2016. Modeling the monthly inflow to Jamishan dam reservoir using autoregressive integrated moving average and adaptive neuro-fuzzy inference system models. J. Water Soil Sci. 26: 2-1. 273-285. (In Persian)
4.Mohammadrezapour, O., and Zeynali, M.J. 2014. Comparison of ant colony, elite ant system and maximum – minimum ant system algorithms for optimizing coefficients of sediment rating curve (Case study: Sistan river). J. Appl. Hydrol. 1: 2. 55-66.
5.Nawaz, N., Harun, S., and Talei, A. 2015. Application of adaptive network-based fuzzy inference system (ANFIS) for river stage prediction in a tropical catchment. Applied mechanics and materials. Trans Tech Publisher, Switzerland. 735: 195-199.
6.Nazeri Tahroudi, M., Ahmadi, F., and Nazeri Tahroudim, Z. 2013. SAMS2007 software application in modeling the future climate to predict, temperature and rainfall of Kurdistan province (Case study: synoptic station in Sanandaj). 1th Semi-Arid Hydrology National Conference in KurdistanProvince. August 25. Sanandaj. (In Persian)
7.Salas, J.D. 1980. Applied modeling of hydrologic time series. Water Resources Publication.
8.Zou, P., Jingsong, Y., Jianrong, F., Guangming, L., and Dongshun, L. 2010. Artificial neural network and time series models for predicting soil salt and water content. J. Agric. Water Manage. 97: 2009-2019.