1.Breusers, H., Nicollet, G., and Shen, H. 1997. Local scour around cylindrical piers. J. Hydr. Res. IAHR, 15: 3. 211-252.
2.Diehl, T. 1997. Potential drift accumulation at bridge. Report No. FHWARD -97-028, Hydraulic Engineering No. 9, Federal Highway Administration, Washington, D.C.
3.Hagerty, D., Parola, A., and Fenske, T. 1995. Impacts of. 1993. Upper Mississippi river basin floods on highway systems. Report No. 1483. Transportation research board, Washington, DC. 121: 12. 869-876.
4.Hong S. 2005. Interaction of bridge contracrion scour and pier scour in a laboratory river model. M.Sc. thesis. Civil and Environmental Deep. Georgia Inst. of Technology. Atland.
5.Kumar, V., Rang Raju, K., and Vittal, N. 1999. Reduction of local scour around bridge piers using slot and collars. J. Hydr. Engin. ASCE. 125: 12. 1302-1305.
6.Lagasse, P., Clopper, P., and Zevenbergen, L. 2010. Effects of Debris on Bridge Pier Scour, NCHRP Report 653, Transportation Research Board, National Academies of Science, Washington, D.C. 117p.
7.Lagasse, P., Zevenbergen, L., Schall, J., and Clopper, P.E. 2007. Countermeasures to protect Bridge piers from scour. NCHRP Report No. 593, Transportation Research Record, Transportation Research Board, Washington, D.C. 6p.
8.Melville, B.W. 1992. Local Scour at bridge abutment. J. Hydr. Engin. 118: 4. 615-631.
9.Melville, B. 1997. Pier and abutment scour–an integrated approach. J. Hydr. Engin.
123: 2. 125-136.
10.Moshashaie, M. 2014. Experimental investigation of the effect of rectangular woody debris on scour of a sharp nose square and a square piers, M.Sc. dissertation, Faculty of agriculture, Shahr-e-Kord University. (In Persian)
11.Oben-nyarko, K., and Ettema, R. 2011. Pier and abutment scour interaction. J. Hydr. Engin. ASCE. Pp: 1599-1605.
12.Parola, A., Apelt, C., and Jempson, M. 2000. Debris Force on Highway Bridge. NCHRP Report No. 445, Transportation Research Record, Transportation Research Board, Washington, D.C. 176p.
13.Pagliara, S., and Carnacina, L. 2010. Temporal scour evolution at bridge piers: effect of wood debris roughness and porosity, J. Hydr. Res. 48: 1. 3-13.
14.Pagliara, S., and Carnacina, L. 2011. Influence of Wood Debris Accumulation on Bridge Pier Scour. J. Hydr. Engin. ASCE. 137: 254-261.
15.Park, J., Chamroeun, S., Park, C., and Young, D. 2015. A Study on the Effects of
Debris Accumulation at Sacrificial Piles on Bridge Pier Scour. KSCE J. Civil Engin.
20: 4. 1546-1551.
16.Raudkivi, A., and Ettema, R. 1983. Clear water scour at cylindrical piers. J. Hydr. Engin. ASCE, 103: 10. 1209-1213.
17.Schmocker, L., and Hanger, W. 2010. Drift accumulation at River Bridge. Laboratory
of Hydraulic, Hydrology and Glaciology VAW, ETH-Zurich, Zurich, Switzerland Bundesanstalt fur Wasserbau ISBN 978-3-939230-00-7.
18.Walleerstein, N., and Thome, C. 1996. Impact of wood debris on fluvial processes and channel morphology in stable and unstable stream. US Army Research Development and standardization Group., UK, London. 162p.
19.Walleerstein, N., and Thome, C., and Doyle, M. 1997. Spatial distribution and impact of large woody debris in norther Mississippi. Proceedings of the conference and Management of Landscapes Disturbed by channel Incision, May 19-23. Pp: 145-150.