1.Acosta, J.A., Cano, A.F., Arocena, J.M., Debela, F., and Martinez-Martinez, S. 2009.
Distribution of metals in soil particle size fractions and its implication to risk assessment of
playgrounds in Murcia City (Spain). Geoderma. 149: 101-109.
2.Adhikari, T., and Singh, M.V. 2003. Sorption characteristics of lead and cadmium in some
soils of India. Geoderma. 114: 81-92.
3.Alloway, B.J. 1990. Heavy Metals in Soils: Lead. Blackie and Glasgow. London, Pp: 177-190.
4.Anderson, B., and Jenne, E. 1970. Free iron and manganese oxide content of reference clay.
Soil Sci. 109: 163-169.
5.Anderson, P.R., and Christensen, T.H. 1988. Distribution coefficients of Cd, Co, Ni and Zn in
soils. J. Soil Sci. 39: 15-22.
6.Barber, S.A. 1995. Soil Nutrient Bioavailability: A Mechanistic Approach. Wiley & Sons,
New York, 384p.
7.Barthès, B.G., Kouakoua, E., Larré-Larrouy, M., Razafimbelo, T.M., de Luca, E.F.,
Azontonde, A., Neves, C.S.V.J., de Freitas, P.L., and Feller, C.L. 2008. Texture and
sesquioxide effects on water-stable aggregates and organic matter in some tropical soils.
Geoderma. 143: 14-25.
8.Ben-Hur, M., Shainberg, I., Bakker, D., and Keren, R. 1985. Effect of soil texture and CaCO3 content
on water infiltration in crusted soil as related to water salinity. Irrigation Science. 6: 281-294.
9.Bradl, H.B. 2004. Adsorption of heavy metal ions on soils and soils constituents. J. Coll. Int.
Sci. 277: 1-18.
10.Cavallaro, N., and McBride, M.B. 1984. Zinc and copper sorption and fixation by an acid
soil clay: Effect of selective dissolutions. Soil Sci. Soc. Amer. J. 48: 1050-1054.
11.Elrashidi, M.A., and Oconnor, G.A. 1982. Influence of solution composition on sorption of
zinc by soils. Soil Sci. Soc. Amer. J. 46: 1153-1158.
12.Gee, G.W., and Bauder, J.W. 1986. Particle size analysis. P 404-407, In: A. Klute (Ed.),
Methods of Soil Analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
13.Giles, C.H., Smith, D., and Huitson, A. 1974. A general treatment and classification of the
solute adsorption isotherm. I. theoretical. J. Coll. Int. Sci. 47: 755-756.
14.Gong, C., Ma, L., Cheng, H., Liu, Y., Xu, D., Li, B., Liu, F., Ren, Y., Liu, Z., Zhao, C., Yang,
K., Nie, H., and Lang, C. 2014. Characterization of the particle size fraction associated heavy
metals in tropical arable soils from Hainan Island, China. J. Geochem. Exp. 139: 109-114.
15.Hooda, P.S. 2010. Trace Elements in Soils. Kingston University London, UK, 616p.
16.Huang, B., Li, Z., Huang, J., Guo, L., Nie, X., Wang, Y., Zhang, Y., and Zeng, G. 2014.
Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red
paddy soil. J. Hazard Mater. 264: 176-183.
17.Jalali, M., and Moharrami, S. 2007. Competitive adsorption of trace elements in calcareous
soils of Western Iran. Geoderma. 140: 156-163.
18.Kabata –Pendias, A. 2011. Trace Elements in Soils and Plants. CRC. Press. 505p.
19.Lindsay, W.L., and Norvell, W.A. 1978. Development of DTPA test for zinc, iron,
manganese and copper. Soil Sci. Soc. Amer. J. 42: 421-428.
20.Liu, P.Y., Wen, Q.L., Li, Y.J., Dong, C.X., and Pan, G.X. 2015. Kinetics of specific and
non-specific copper sorption on aggregates of an acidic paddy soil from the Taihu Lake
region in East China. Pedosphere. 25: 37-45.
21.Marquez, C.O., Garcia V.J., Cambardella, C.A., Schultz, R.C., and Isenhart, T.M. 2004.
Aggregate-size stability distribution and soil stability. Soil Sci. 68: 725-735.
22.McBride, D.B., Tyler, L.D., and Hovde, D.A. 1981. Cadmium adsorption by soils and uptake
by plants as affected by soil chemical properties. Soil Sci. Soc. Amer. J. 45: 739-744.
23.Moallemi, S., and Davatgar, N. 2011. Comparison of artificial neural network and regression
pedotransfer functions for prediction of cation exchange capacity in Guilan province soils.
Water Soil Sci. (J. Sci. Technol. Agric. Natur. Resour.). 15: 169-182.
24.Mohammadi, J., and Motaghian, H.R. 2011. Spatial prediction of soil aggregate stability and
aggregate associated organic carbon at the catchment scale using geostatistical techniques.
Pedosphere. 21: 389-399.
25.Mojalali, H. 1995. Soil Chemistry. Publishing Center of Tehran University.
26.Morera, M.T., Echeverria, J.C., Mazkiaran, J., and Garrido, J. 2001. Isotherms and sequential
extraction procedures for evaluating sorption and distribution of heavy metals in soils.
Environ. Poll. 113: 135-144.
27.Naghipoor Khalkhalaliani, D., Mesdaghinia, A.R., Mahvi, A.H., Nouri, J., and Vaezi, F.
2006. An experimental study of heavy metal extraction, using various concentration of
EDTA in a sandy loam soils. Pakistan Biological Sciences. 9: 5. 837-842.
28.Nelson, D.W., and Sommers, L.E. 1996. Carbon, organic carbon and organic matter.
P 961-1010, In: D.L. Sparks (Ed.), Methods of Soil Analysis. SSSA, Madison, WI.
29.Nourbakhsh, F., Jalalian, A., and Shariatmadari, H. 2003. Estimation of cation exchange
capacity from some soil physical and chemical properties. Water Soil Sci. (J. Sci. Technol.
Agric. Natur. Resour.). 7: 3. 107-118.
30.Palma, L.D., Ferrantelli, P., and Medici, F. 2005. Heavy metals extraction from
contaminated soil: Recovery of the flushing solution. J. Environ. Manage. 77: 205-211.
31.Qishlaqi, A., and Moore, F. 2007. Statistical analysis of accumulation and sources of heavy
metals occurrence in agricultural soils of Khoshk River Banks, Shiraz, Iran. Amer.-Eurasi. J.
Agri. Environ. Sci. 2: 565-573.
32.Raeisi, T. 2015. Environmental effects of heavy metals in agricultural soils. J. Agric. Engin.
Natur. Resour. 46: 34-37. (In Persian)
33.Rhoades, J.D. 1996. Salinity: electrical conductivity and total dissolved solids. P 417-435,
In: D.L. Sparks (Ed.), Methods of Soil Analysis. SSSA, Madison.
34.Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agricultural
hand book 60. U.S. Dept. of Agriculture, Washington D.C., 160p.
35.Sarrano, S., Garrido, F., Campbell, C.G., and Garcia-Gonzalez, M.T. 2005. Competitive
sorption of cadmium and lead in acid soils of central Spain. Geoderma. 124: 91-104.
36.Shukla, M.K., Lal, R., and VanLeeuwen, D. 2007. Spatial variability of aggregate-associated
carbon and nitrogen contents in the reclaimed mine soils of eastern Ohio. Soil Sci. Soc.
Amer. J. 71: 1748-1757.
37.Singh, D., McLaren, R.G., and Cemeron, K.C. 2006. Zinc sorption-desorption by soils:
Effect of concentration and length of contact period. Geoderma. 137: 117-125.
38.Slejko, F. 1985. Adsorption Technology a Step by Step Approach to Process Evaluation and
Application. Marcel-Deeker, New York, 590p.
39.Sparks, D.L. 1985. Kinetics of Soil Chemical Process. Academic Press, 210p.
40.Sparks, D.L. 2003. Environmental Soil Chemistry. Academic Press, 352p.
41.Sposito, G., LaClaire, J.P., LeVesque, S., and Senesi, N. 1982. Methodologies to Predict the
Mobility and Avalibility of Hazardous Metal in Sludge-Amended Soils. University of
California. Davis. CA, 94p.
42.Sumner, M.E., and Miller, W.P. 1996. Cation exchange capacity and exchange coefficients.
Methods of soil analysis. Chemical methods. Soil Science Society of America, Book series
number 5.
43.Thomas, G.W. 1996. Soil pH and soil acidity. P 475-490, In: D.L. Sparks (Ed.), Methods of
Soil Analysis. SSSA, Madison, WI.
44.Torros, L.G., Lopez, R., and Beltran, M. 2011. Effects of surfactants on low-molecularweight organic acids to wash soil zinc. Environ. Sci. Poll. Res. 23: 4629-4638.
45.Tume, P., Bech, J., Longan, L., Tume, L., Reverter, F., and Sepulveda, B. 2006. Trace
elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecol. Eng. 27: 145-152.
46.Wang, F., Pan, G., and Li, L. 2009. Effects of free iron oxyhydrates and soil organic matter
on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils.
J. Environ. Sci. 21: 618-624.
47.White, W.M. 1993. Dry aggregate distribution. P 659-662, In: M.R. Carter (Ed.), Manual on
Soil Sampling and Methods of Analysis. CRC Press, Boca Raton.
48.Zhang, M.K., He, Z.L., Calvert, D.V., Stoffella, P.J., Yang, X.E., and Li, Y.C. 2003.
Phosphorus and heavy metal attachment and release in sandy soil aggregate fractions. Soil
Sci. Soc. Amer. J. 67: 1158-1167.