1.Bonilla, C.A., and Johnson, O.I. 2012. Soil erodibility mapping and its correlation with soil
properties in Central Chile. Geoderma. 189: 116-123.
2.Brus, D.J., Kempen, B., and Heuvlink, G.B.M. 2011. Sampling for validation of digital soil
maps. Eur. J. Soil Sci. 62: 394-407.
3.Dai, P.F., Qigang, Z., Zhiqiang, L.V., Xuemei, W., and Gangcai, W.L. 2014. Spatial
prediction of soil organic matter content integrating artificial neural network and ordinary
kriging in Tibetan Plateau. Ecol. Ind. 45: 184-194.
4.Gallant, J.C., and Dowling, T.I. 2003. A multiresolution index of valley bottom flatness for
mapping depositional areas. Water Resour. Res. 39: 12. 1347-1360.
5.Gee, G.W., and Bauder, J.W. 1986. Particle size analysis. P 383-411, In: A. Klute (Ed.),
Methods of Soil Analysis. Part 1. American Society of Agronomy. Madison, WI.
6.Hengel, T., Rossiter, D.G., and Stein, A. 2003. Soil sampling strategies for spatial prediction
by correlation with auxiliary maps. Geoderma. 120: 75-93.
7.Heung, B., Bulmer, C.E., and Schmidt, M.G. 2014. Predictive soil parent material mapping at
a regional-scale: a random forest approach. Geoderma. 214-215: 141-154.
8.Jafari, A., Khademi, H., Finke, P., Wauw, J.V.D., and Ayoubi, S. 2014. Spatial prediction of
soil great groups by boosted regression trees using a limited point dataset in an arid region,
southeastern Iran. Geoderma. 232-234: 148-163.
9.Kang, S., Zhang, L., Song, X., Zhang, S., Liu, X., Liang, Y., and Zheng, S. 2001. Runoff and
sediment loss responses to rainfall and land use in two agricultural catchments on the Loess
Plateau of China. Hydrol. Process. 15: 977-988.
10.Lado, M., Paz, A., and Ben-Hur, M. 2004. Organic matter and aggregate size interactions in
infiltration, seal formation, and soil loss. Soil Sci. Soc. Am J. 68: 3. 935-942.
11.Malone, B.P., McBratney, A.B., Minasny, B., and Laslett, G.M. 2009. Mapping continuous
depth functions of soil carbon storage and available water capacity. Geoderma. 154: 138-152.
12.Marcel, G.S., Feike, J.L., Martinus, T., and van Genuchten, H. 1998. Neural Network
Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Sci. Soc. Am. J.
62: 847-855.
13.Marchetti, A., Piccini, C., Francaviglia, R., and Mabit, L. 2012. Spatial Distribution of Soil
Organic Matter Using Geostatistics: A Key Indicator to Assess Soil Degradation Status in
Central Italy. Pedosphere. 22: 2. 230-242.
14.McBratney, A.B., Santos, M.L.M., and Minasny, B. 2003. On digital soil mapping.
Geoderma. 117: 3-52.
15.McIntosh, P., and Laffan, M. 2005. Soil erodibility and erosion hazard: Extending these
cornerstone soil conservation concepts to headwater streams in the forestry estate in
Tasmania. For. Ecol. Manage. 220: 1. 128-139.
16.Minasny, B., and McBratney, A. 2002. The method for fitting neural network parametric
pedotransfer functions. Soil Sci. Soc. Am. J. 66: 2. 352-361.
17.Nabiollhi, K., Haidari, A., and Taghizadeh-Mehrjardi, M. 2014. Digital mapping of soil
texture using regression tree and ann in Bijar, Kurdistan. J. Water Soil. 28: 5. 1025-1036.
(In Persian)
18.Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter.
P 539-594, In: A.L. Page and D.R. Keeney (Eds.), Methods of Soil Analysis, Part 2-
Chemical and Microbiological Properties. ASA-SSSA, Madison, WI.
19.Nosrati, H., and Eftekhari, M. 2014. A new approach for variable selection using fuzzy logic.
Comput. Intell. Electron. Syst. 4: 71-83. (In Persian)
20.Pahlavan-Rad, M.R., Toomanian, N., Khormali, F., Brungard, C.W., Komaki, C.B., and
Bogaert, P. 2014. Updating soil survey maps using random forest and conditioned Latin
hypercube sampling in the loess derived soils of northern Iran. Geoderma. 232-234: 97-106.
21.Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., and Alewell, C. 2014. Soil erodibility
in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 479: 189-200.
22.Parvizi, Y., Manochehr, G., Mahmoud, O., Mahdian, M.H., and Amini, M. 2010.
Determination of Soil Organic Carbon Variability of Rainfed Crop Land in Semi-arid
Region (Neural Network Approach). Mod Appl Sci. 4: 7. 25-33.
23.Shirazi, M.A., and Boersma, L. 1984. A unifying quantitative analysis of soil texture. Soil
Sci. Soc. Am. J. 48: 142-147.
24.Somaratne, S., Seneviratne, G., and Coomaraswamy, U. 2005. Prediction of Soil Organic
Carbon across Different Land-use Patterns: A Neural Network Approach. Soil Sci. Soc. Am.
J. 69: 1580-1589.
25.Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., and Triantafilis, J. 2015. Comparing
data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh
region, Iran. Geoderma. 253-254: 67-77.
26.Taghizadeh-Mehrjardi R., Nabiollahi K., and Kerry, R. 2016. Digital mapping of soil organic
carbon at multiple depths using different data mining techniques in Baneh region, Iran.
Geoderma. 253-254: 67-77.
27.Taghizadeh-Mehrjardi, R. 2016. Modern concepts in Soil Science (Pedometric). Ardakan
Univ. Press, 311p. (In Persian)
28.Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, B.P. 2014. Digital
mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213: 15-28.
29.Vasques, G.M., Dematte, J.A.M., Viscarra Rossel, R.A., Ramirez-Lopez, L., and Terra, F.S.
2014. Soil classification using visible/near-infrared diffuse reflectance spectra frommultiple
depths. Geoderma. 223-225: 73-78.
30.Wischmeier, W.H., and Smith, D.D. 1978. Predicting rainfall erosion losses: a guide to
conservation planning. Agric. No. 282. US of Agriculture, Washington, DC.
31.Yu, D.S., Xue-Zheng, S., and Weindorf, D.C. 2006. Relationships between permeability
and erodibility of cultivated acrisols and cambisols in subtropical China. Pedosphere.
16: 3. 304-311.