1.Asghari-Jafarabadi, M., and Mohammadi, S.M. 2013. Statistical Series: An Introduction to
Inferential Statistics (Point Estimation, Confidence Interval and Hypothesis Testing).
J. Diabetes and Metabolic Disorders, Under Press. (In Persian)
2.Behboudi, A. 2009. Reviews of gully erosion in the watershed Sarand Chay (with emphasis
on the EGEM). M.Sc. Thesis, Tabriz University, 121p. (In Persian)
3.Bell, G.F. 2000. Engineering Properties of Soils and Rocks. Fourth Edition, Blackwell
Science, Great Britain, 55p.
4.Capra, A. 2013. Ephemeral gully and gully erosion in cultivated land: a review. Drainage
Basins and Catchment Management (Lannon EC, ed.). Nova Science Publishers, New York,
USA, Pp: 109-141.
5.Capra, A., and Scicolone, B. 2002. Ephemeral gully erosion in a wheat cultivated area in
Sicily, Italy. Biosystems Engineering. 83: 1. 119-126.
6.Capra, A., Mazzara, L.M., and Scoicolone, B. 2005. Application of the EGEM model to
predict ephemeral gully erosion in Sicily, Italy. Catena. 59: 133-146.
7.Casali, J., Lopez, J.J., and Giraldez, J.V. 1999. Ephemeral gully erosion in Southern Navarra
(Spain). Catena. 36: 65-84.
8.Franti, T.G., Laflen, J.M., and Watson, D.A. 1985. Soil Erodibility and Critical Shear Under
Concentrated Flow. ASAE Summer Meet. The Ohio State University, Columbus, OH, USA,
256p.
9.Gordon, L.M., Bennett, S.J., Bingner, R.L., Theurer, F.D., and Alonso, C.V. 2007. Simulating
ephemeral gully erosion in AnnAGNPS. American Society of Agricultural and Biological
Engineers. 50: 3. 857-866.
10.Kompani-Zare, M., Soufi, M., Hamzehzarghani, H., and Dehghani, M. 2011. The effect of
some watershed, soil characteristics and morphometric factors on the relationship between
the gully volume and length in Fars province, Iran. Catena. 86: 150-159.
11.Nachtergaele, J.J., Poeson, A., Steegen, I., Takken, L., Beuselinck, L., Vandekereckove, G.,
and Grovers, G. 2001. The value of a physically based model versus an empirical approach
in the prediction of Ephemeral gully erosion for loss-dierived soils. Geomorphology.
40: 237-252.
12. Nourmohammadi, F., and Haghizadeh, A. 2014. Factors controlling the morphology and
volume –length relations of ephemeral gullies in the Western arid regions of Iran. Ecopersia.
2: 3. 613-628.
13.Poesen, J., Nachtergaele, J., Verstraeten, G., and Valentin, C. 2003. Gully Erosion and
Environment Change: Importance and Research Needs. Catena. 50: 91-133.
14.R Development Core Team, 2008. R: A language and Environment for Statistical Computing.
15.Rezaei-Moghaddam, M.H., and Behboudi, A. 2011. Application of EGEM for
estimating Ephemeral gully erosion in the watershed Sarnd Chay, Ahar. J. Geograph.
Space. 11: 35. 135-153. (In Persian)
16.Silakhori, E., Ownegh, M., Sadoddin, A., and Filekesh, E. 2014. Comparing efficiency of
Iranian desert hazard assessment models, namely MICD and IMDPA (Case study: Sabzevar
region). Gorgan J. Water Soil Cons. 21: 4. 1-28. (In Persian)
17.Tekwa, I.J., Alhassan, A.B., Chiroma, A.M., and Laflen, J.M. 2014. Prediction of Ephemeral
Gully Erosion in Mubi. Northeast Nigeria, Agric. Sci. Res. J. 4: 7. 115-125.
18.Valcarcel, M., Taboada, T., Paz, A., and Dafonte, J. 2005. Ephemeral gully erosion in north
western Spain. Catena. 50: 199-266.
19.USDA, Soil Conservation Service. 1992. Ephemeral gully erosion model EGEM, Version
2.0 DOS User Manual.
20.Valentin, C., Poesen, J., and Yong, Li. 2005. Gully erosion: impacts, factors and control.
Catena. 63: 132-153.
21.Woodward, D.E. 1999. Method to predict cropland ephemeral gully erosion. Catena. 37: 393-399.
22.Zhang, Y., Wua, Y., and Liu, B. 2007. Characteristics and factors controlling the
development of ephemeral gullies in cultivated catchments of black soil region, Northeast
China. Soil and Tillage Research. 96: 28-41.