1.Alavi Panah, K. 2009. Principles of remote sensing. TehranUniv. Press, 780p. (In Persian)
2.Alimohammadi, A., Matkan, A., and Mirbagheri, B. 2010. The Evaluation of CELLULAR
AUTOMATA model efficiency in simulation of urban areas development (Case study:
suburbs of south west of Tehran). J. Spat. Plan. (Modares Human Sciences). 14: 2.81-102.
(In Persian)
3.Amiraslani, F., and Dragovich, D. 2011. Combating desertification in Iran over the last
50 years: An overview of changing approaches. J. Environ. Manage. 92: 1-13. (In Persian)
4.Bennett, H.H. 1939. Soil conservation. McGraw-Hill Book Company, New York, USA, 993p.
5.Chang, C.L., and Chang, J.C. 2006. Markov model and cellular automata for vegetation. J.
Geograph. Res. 45: 1. 45-57.
6.Du, Y., Teillet, P.M., and Cihlar, J. 2002. Radiometric normalization of multi-temporal
high-resolution satellite images with quality control for land cover change detection.
Rem. Sens. Environ. J. 82: 123-134.
7.Eastman, J.R., McKendry, J., and Fulk, M.A. 2005. Change and time series analysis.
Informations Systems Technology. United Nations Institute for Training and Research.
Geneva, 325p.
8.Eastman, J.R., McKendry, J., and Fulk, M.A. 2006. Change and time series analysis.
In:Explorations in Geographic Informations Systems Technology. United Nations Institute
for Training and Research. Geneva, 325p.
9.Falahatkar, S., Sefyanian, A., Khajehaldin, S.J., and Ziaei, H. 2009. The ability of
CA- Markov model to predict land cover map (Case study: Isfahan). Geomatics Conference.
Tehran, Pp: 31-37. (In Persian)
10.Feizizadeh, B., and Haji Mirrahimi, M. 2007. Land use changes detection using objectoriented classification (Case study: Shahrak Andisheh). J. Survey. 19: 99. 1-10. (In Persian)
11.Guan, D., Li, H., Inohae, T., Suweici, N., and Hokao, K. 2011. Modeling urban land
use change by the integration of cellular automaton and Markov model. J. Ecol. Model.
222: 3761-3772.
12.Hashemin Nasab, F., Mousavi Baygi, M., Bakhtiari, B., and Davari, K. 2013. Prediction the
Rainfall Changes with Downscaling LARS-WG and HadCM3 models in Kerman during the
next 20 years (2030-2011). J. Irrig. Water Engin. Iran. 3: 12. 43-58. (In Persian)
13.Hathout, S. 2002. The use of GIS for monitoring and predicting urban growth in East and
West St Paul, Winnipeg, Maintoba, Canada. J. Environ. Manage. 66: 229-238.
14.Kerman meteorological organization. 2015. www.weather.kr.ir. (In Persian)
15.Li, H., and Reynolds, J.F. 1997. Modeling effects of spatial pattern, drought and grazing on
rates of rangeland degradation: a combined Markov and cellular automaton approach. Scale
in Remote Sensing and GIS. Lewis Publishers, Boca Raton, Florida, Pp: 211-230.
16.Mas, J., Melanie, K., Martin, P., Maria, T., Camacho, O., and Thoma, H. 2014. Inductive
pattern-based land use/cover change models: A comparison of four software packages.
J. Environ. Model. Software. 51: 1. 94-111.
17.Mozafarian Laeen, N., and Nikandish, N. 2013. Zoning drought in the Kerman province,
based on SPI. The National Meteorological Conference, Pp: 1-17. (In Persian)
18.Rafiee, R., Salman Mahiny, A., and Khorasani, N. 2009. Assessment of changes in
urban green spaces of Mashhad city using satellite data. Inter. J. Appl. Earth Obs. Geo Inf.
11: 431-438. (In Persian)
19.Rashmi, M., and Lele, N. 2010. Spatial modeling and validation of forest cover change in
Kanakapura region using GEOMOD. J. Ind. Soc. Rem. Sens. 38: 1. 45-54.
20.Rayegani, B., Zehtabian, G.H., Azarnivand, H., Alavipanah, S.K., and Khajeddin, S.J. 2015.
LADA method Performance evaluation on soil degradation assessment in the East of
Esfahan. J. Range Water. Manage. 68: 1. 109-129. (In Persian)
21.Rezaei Banafsheh, M., Rostamzadeh, H., and Fayezizadeh, B. 2008. The Study and
evaluation of the trend of forest surface changes using the remote sensing and GIS: A Case
study of Arasbaran forests. J. Geograph. Res. 62: 143-159. (In Persian)
22.Rezaei, M., Nohtani, M., Abkar, A., Rezaei, M., and Mirkazehi Rigi, M. 2014. Performance
evaluation of Statistical Downscaling Model (SDSM) in Forecasting Temperature Indexes in
Two Arid and Hyper Arid Regions (Case study: Kerman and Bam). J. Water. Manage. Res.
5: 10. 117-131. (In Persian)
23.Sohl, T.L., and Claggett, P.R. 2013. Clarity versus complexity: Land-use modeling as a
practical tool for decision-makers. J. Environ. Manage. 129: 235-243.
24.Soil survey staff. 2014. Keys to Soil Taxonomy, 13th edition. NRCS, USDA, USA.
25.Soleymani Sardoo, F., Soltani Kupani, S., and Sarhadi, A. 2008. Mapping and analysis of
drought using Standardized Precipitation Index (SPI) in Kerman province. Iran Water
Resources Management Conference, Tabriz University, 23-25 October, Pp: 1-6. (In Persian)
26.Sullivan, D. 2001. Exploring spatial process dynamics using irregular cellular automaton
models. J. Geograph. Anal. 33: 1-18.
27.Sullivan, D., and Torrens, P. 2000. Cellular models of urban systems. Center for advanced
spatial analaysis. Pp: 1-17.
28.Wang, S., Zheng, X., and Zang, X. 2012. Accuracy assessments of land use change simulation
based on Markov-cellular automata model. J. Proc. Environ. Sci. 13: 1. 1238-1245.
29.White, R., and Engelen, G. 2000. High resolution integrated modeling of the spatial
dynamics of urban and regional systems, Computers. J. Environ. Urban Syst. 24: 383-400.
30.Yang, X., Zheng, X.Q., and Lv, L.N. 2012. A spatiotemporal model of land use change
based on ant colony optimization, Markov chain and cellular automata. J. Ecol. Model.
233: 11-19.
31.Zayandehroudi, F., Yazdanpanah, N., and Sayari, N. 2013. 30-year-old three-time changes in
precipitation predicted future fine-scale model of the LARS-WG5 and general circulation
models Hadcm3 (Case study: Kerman). The first national conference on water resources and
agricultural challenges, Islamic Azad University, Khorasgan, Pp: 1-8. (In Persian)