-1.Adib, A., Mahmoudian Kafshgar Kalaee, M., Mahmoudian Shoushtari, M., and M. Khalili, K.
2017. Using of gene expression programming and climatic data for forecasting
flow discharge by considering trend, normality and stationarity analysis. Arabi. J. Geosci.
10: 4. 1-14.
2.Ahmadi, F., Dinpajoh, Y., Fakherifard, A., Khalili, K., and Darbandi, S. 2015. Comparing
nonlinear time series models and genetic programming for daily river flow forecasting
(Case study: Barandouz-Chai River). Soil and water conservation research. 22: 1. 171-186.
(In Persian)
3.Ahmadi, F., Radmanesh, F., and Mirabasi, R. 2015. Comparing the performance of support
vector machines and Bayesian networks in predicting daily river flow (Case study:
Barandouz-Chai River). Soil and water conservation research. 22: 6. 171-186. (In Persian)
4.Botsis, D., Latinopoulos, P., and Diamantaras, K. 2012. Investigation of The effect of
interception and evapotranspiration on the rain fall-run off relationship using Bayesian
networks. In: Proceedings of protection and restoration of the environment XI, Thessaloniki.
5.Chen, S.T., and Yu, P.S. 2007. Real-time probabilistic forecasting of flood stages. J. Hydrol.
340: 63-77.
6.Danandeh Mehr, A., and Majdzadeh Tabatabaei, M.R. 2009. I prediction of daily discharge
trend of river flow based on genetic programming. J. Water Soil. 24: 2. 325-333. (In Persian)
7.Esazadeh, M., Ahmadzadeh, H., and Ghorbani, M.A. 2016. Assessment of kernel functions
performance in river flow estimation using support vector machine. Soil and water
conservation research. 23: 3. 171-186. (In Persian)
8.Ferbodnam, N., Ghorbani, M.A., and Alami, M.T. 2008. River flow prediction using genetic
programming (Case study: Lighvan River Watershed). J. Soil Water. 19: 1. 107-123.
(In Persian)
9.Ferreira, C. 2001. Gene expression programming: a new adaptive algorithm for solving
problems. Complex Systems. 13: 2. 87-129.
10.Ghorbani, M.A., Khatibi, R., Asadi, H., and Yousefi, P. 2012. Inter- Comparison of an
evolutionary programming model of suspended sediment time-series whit other local model.
INTECH. 26: 5. 255-282.
11.Ghorbani, M.A., Khatibi, R., Geol, A., Fazelifard, M.H., and Azani, A. 2016. Modeling river
discharge time series using support vector machine and artificial neural networks.
Environmental Earth Sciences. 75: 4. 675-685.
12.Heckerman, D. 1997. Bayesian networks for data mining. Data Mining and Knowledge
Discovery. 1: 1. 79-119.
13.Huang, S., Chang, J., Huang, Q., and Chen, Y. 2014. Monthly streamflow prediction using
modified emd-based support vector machine. J. Hydrol. 511: 4. 764-775.
14.Kakaei Lafadani, E., Moghaddam Nia, A., Ahmadi, A., Jajarmizadeh, M., and Ghafari, M.
2013. Stream flow simulation using svm, anfis and nam models (a case study). Caspian J.
Appl. Sci. Res. 2: 4. 86-93.
15.Kevin, B., and Nicholson, E. 2010. Bayesian artificial intelligence. Second Edition, United
states. 3: 1. 370-450.
16.Khatibi, R., Naghipour, L., Ghorbani, M.A., and Aalami, M.T. 2012. Predictability of
relative humidity by two artificial intelligence techniques using noisy data from two
Californian gauging stations. Neural computing and application. 23: 7. 643-941.
17.Kisi, O., Karahan, M., and Sen, Z. 2006. River suspended sediment modeling using fuzzy
logic approach. Hydrol Process. 20: 2. 4351-4362.
18.Lin, J.Y., Cheng, C.T., and Chau, K.W. 2006. Using support vector machines for long-term
discharge prediction. Hydrol. Sci. J. 51: 3. 599-612.
19.Liong, S.Y., and Sivapragasam, C. 2002. Flood stage forecasting with support vector
machines. J. Am. Water Resour. 38: 4. 173-186.
20.MacKay, D.J.C. 1992. Bayesian interpolation, Neural Computation. 4: 1. 415-447.
21.Misra, D., Oommen, T., Agarwal, A., Mishra, S.K., and Thompson, A.M. 2009. Application
and analysis of support vector machine based simulation for runoff and sediment yield.
Biosyst. Eng. 103: 3. 527-535.
22.Mohammadpour, M., Mehrabi, A., and Katouzi, M. 2012. Daily discharge forecasting using
support vector machine. Inter. J. Inf. Elec. Engin. 2: 5. 769-772.
23.Moshari, K.H., and Daneshfaraz, R. 2014. Comparison of Bayesian networks with other smart
models predict river flow in Qvrh tea. Tenth International Congress on Civil Engineering.
24.Nagy, H., Watanabe, K., and Hirano, M. 2002. Prediction of sediment load concentration in
rivers using artificial neural network model. J. Hydraul. Engin. 128: 3. 558-559.
25.Nguyen, R.T., Prentiss, D., and Shively, J.E. 1998. Rainfall interpolation for Santa Barbara
County. UCSB, Department Geography. USA.
26.Roshangar, K., Vojoudi Mehrabani, F., and Alami, M.T. 2013. Forecasting daily stream
flows of vaniar river using genetic programming and neural networks approaches. J. Civil
Engin. Urban. 3: 4. 197-200.
27.Sadeghi Hesar, A., Tabatabaee, H., and Jalali, M. 2012. Monthly rainfall forecasting using
bayesian belief networks. Inter. Res. J. Appl. Bas. Sci. 3: 11. 2226-2231.
28.Sedighi, F., Vafakhah, M., and Javadi, M. R.2016. Rainfall–Runoff modeling using support
vector machine in snow-affected watershed. Arab. J. Sci. Engin. 41: 10. 4065-4076.
29.Tokar, A.S., and Johnson, P.A. 1999. Rainfall-Runoff modeling using artificial neural
networks. J. Hydrol. Engin. 3: 4. 232-239.
30.Vapnik, V.N. 1995. The nature of statistical learning theory. Springer, New York,
Pp: 250-320.
31.Vapnik, V.N. 1998. Statistical learning theory. Wiley, New York, Pp: 250-320.
32.Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. 2011. A comparative study of
artificial neural networks and support vector machines for predicting groundwater levels in a
coastal aquifer. J. Hydrol. 396: 128-138.
33.Zamani, R., Ahmadi, F., and Radmanesh, F. 2014. Comparison of the gene expression
programming, nonlinear time series and artificial neural network in estimating the river daily
flow (case study: the Karun river). J. Soil Water. 28: 6. 1172-1182. (In Persian)