1.Ciray, C. 1976. On secondary currents. 12th IAHR Congress, Fort. Collins. 1: 408-413.
2.Gu, Z.H., Cao, X.M., and Lu, J.W.Z. 2013. Exploring Appropriate CFD Model and Impact
Scale for Non-submerged Spur Dikes. APCOM & ISCM 11-14th December, 2013,
Singapore.
3.Jamieson, E.C., Rennie, C.D., and Townsend, R.D. 2013. 3D Flow and Sediment Dynamics in
a Laboratory Channel Bend with and without Stream Barbs. J. Hydr. Engin. 139: 154-166.
4.Mansoori, A.R., Nakagawa, H., Kawaike, K., Zhang, H., and Safarzdeh, A. 2012. Study of the
Characteristics of the Flow around a Sequence of Non-Typically Shaped Spur Dikes
Installed in a Fluvial Channel. Annuals of Disaster Prevention Research Institute, Kyoto
University, No. 55B, 2012.
5.Mirpanji, S., Mousavi Jahromi, H., and Mousavi, B. 2011. Investigation of the effect of
geometry and hydraulic parameters of perpendicular spurdike on river scour using CCHE2D
model. 11th Hydraulic conference, Iran, November 2011, Urumieh University. (In Persian)
6.Prandtl, L. 1952. Essentials of fluid dynamics. Hofner publishing company, New York.
7.Rozovskii, I.L. 1957. Flow of water in bend of open channel., Academy of Sciences of the
Ukrainian SSR. Institute of Hydrology and Hydraulic Engineering. 233p.
8.Vaghefi, M., Ghodsian, M., and Salehi Neyshabouri, S.A.A. 2012. Experimental Study on
Scour around a T-Shaped Spur Dike in a Channel Bend. J. Hydr. Engin. 138: 471-474.
9.Zahiri, J., Kahefipour, S.M., Shafai Bahestan, M., and Ghomeshi, M. 2012. Riprap stability
around spurs in the bend. J. Irrig. Sci. Engin. 35: 4. 49-58. (In Persian)