1.Cattel, R.B. 1996. The scree test for the number of the factor. Multivariate Behavioral
Research. 1: 245-276.
2.Danandehmehr, A., and Majdzadeh Tabatabai, M.R. 2010. I Prediction of Daily Discharge
Trend of River Flow Based on Genetic Programming. J. Water Soil (Iran). 24: 2. 325-333.
(In Persian)
3.Demyanov, V., Soltani, S., Kanevski, M., Conu, S., Maignan, M., Savelieva, E., Timonin, V.,
and Pisaren, K.V. 2001. Wavelet analysis residual kriging Vs. neural network residual
kriging. Stochastic Env. Res. Risk Ass. 15: 18-32.
4.Ferreira, C. 2001. Gene Expression Programming: a New Adaptive Algorithm for Solving
Problem. Complex Systems. 13: 87-129.
5.Hutcheson, G., and Nick, S. 1999. The multivariate social scientist: Introductory statistics
using generalized linear models. Thousand Oaks, CA, Sage Publications.
6.Jayawardena, A.W., Xu, P., and Tsang, F.L.L. 2004. Rainfall predication by wavelet
decomposition. Proceedings of the 2nd Asia Pacific Association of Hydrology and Water
Resources Conference, volume II, 5-8, July 2004, Singapore, Pp: 11-19.
7.Karimi, S., Shiri, J., Kisi, O., and Shiri, A.A. 2015. Short-term and long-term streamflow
prediction by using 'wavelet–gene expression' programming approach. ISH J. Hydraul.
Engin. Pp: 1-15.
8.Kisi, O., Shiri, J., and Nazemi, A.H. 2011. A Wavelet-Genetic Programming Model for Predicting
Short-Term and Long-Term Air Temperatures. J. Civil Engin. Urbanism. 1: 1. 25-37.
9.Mallat, S.G. 1998. A wavelet tour of signal processing, San Diego.
10.Nakken, M. 1999. Wavelet analysis of rainfall–runoff variability isolating climatic from
anthropogenic patterns. Environmental Modelling & Software. 14: 4. 283-295.
11.Nourani, V., Hosseini Baghanam, A., Adamowski, J., and Kisi, O. 2014. Applications of
hybrid Wavelet-Artificial Intelligence models in hydrology, A review. J. Hydrol. 514: 358-377.
12.Nourani, V., Komasi, M., and Mano, A. 2009. A Multivariate ANN-Wavelet Approach for
Rainfall–Runoff Modeling. Water Resour. Manage. 23: 2877-2894.
13.Riad, S., Mania, J., Bouchaou, L., and Najjar, Y. 2004. Rainfall-runoff model usingan artificial
neural network approach. Mathematical and Computer Modelling. 40: 7-8. 839-846.
14.Shafaei, M., Fakheri Fard, A., Darbandi, S., and Ghorbani, M.A. 2014. Prediction Daily
Flow of Vanyar Station Using ANN and Wavelet Hybrid Procedure. J. Irrig. Water Engin.
4: 24. 113-129. (In Persian)
15.Shiri, J., and Kişi, Ö. 2011. Comparison of genetic programming with neuro-fuzzy
systems for predicting short-term water table depth fluctuations. Computers & Geosciences.
37: 10. 1692-1701.
16.Shoaib, M., Shamseldin, A.Y., Melville, B.W., and Khan, M.M. 2015. Runoff Forecasting
using HybridWavelet Gene Expression Programming (WGEP) Approach. J. Hydrol.
527: 326-344.
17.Solgi, A. 2014. Stream flow forecasting using combined Neural Network Wavelet model and
comparsion with Adaptive Neuro Fuzzy Inference System and Artificial Neural Network
methods (Case study: Gamasyab River, Nahavand). M.Sc. Thesis, Shahid Chamran
University of Ahvaz, Iran, 164p. (In Persian)