1.Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T. 2002. A tutorial on particle
filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Processess.
50: 2. 174-189.
2.Beven, K.J., and Freer, J. 2001. Equifinality, data assimilation and uncertainty estimation in
mechanistic modelling of complex environmental systems. J. Hydrol. 249: 11-29.
3.Boyle, D.P. 2000. Multicriteria calibration of hydrological models. PhD Dissertation,
Department of Hydrology and Water Resources. University of Arizona, 145p.
4.Bulygina, N., and Gupta, H. 2009. Estimating the uncertain mathematical structure of a water
balance model via Bayesian data assimilation. Water Resour. Res. 45: W00B13.
5.Clark, M.P., and Vrugt, J.A. 2006. Unraveling uncertainties in hydrologic model calibration:
Addressing the problem of compensatory parameters. Geophys. Res. Lett. 33 (L06406): 1-5.
6.DeChant, C., and Moradkhani, H. 2012. Examining the effectiveness and robustness of
sequential data assimilation methods for quantification of uncertainty in hydrologic
forecasting. Water Resour. Res. 48: W04518.
7.Duan, Q., Sorooshian, S., and Gupta, V.K. 1992. Effective and efficient global optimization
for conceptual rainfall-runoff models. Water Resour. Res. 28: 4. 1015-1031.
8.Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi geostrophic model
using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99: 10143-10162.
9.Gordon, N., Salmond, D., and Smith, A.F.M. 1993. Novel approach to nonlinear and
non-Gaussian Bayesian state estimation, Proc. Inst. Electr. Eng. 140: 107-113.
10.Leisenring, M., and Moradkhani, H. 2011. Snow water equivalent prediction using Bayesian
data assimilation methods. Stoch. Environ. Res. Risk Assess. 25: 2. 253-270.
11.Li, T., Gannan, Y., and Wang, L. 2016. Particle Filter with Novel Nonlinear Error
Model for Miniature Gyroscope-Based Measurement While Drilling Navigation. Sensors.
16: 3. 371-394.
12.Liu, J.S., Chen, R., and Logvinenko, T. 2001. A theoretical framework for sequential
importance sampling and resampling, in Sequential Monte Carlo Methods in Practice.
Springer, New York, Pp: 225-246.
13.Miller, R.N., Ghil, M., and Guathiez, F. 1994. Advanced data assimilation in strongly
nonlinear dynamical systems. J. Atmos. Sci. 51: 8. 1037-1056.
14.Moore, R.J. 1985. The probability-distributed principle and runoff production at point and
basin scales. Hydrol. Sci. J. 30: 2. 273-297.
15.Moradkhani, H., Hsu, K.L., Gupta, H., and Sorooshian, S. 2005. Uncertainty assessment of
hydrologic model states and parameters: Sequential data assimilation using the particle filter.
Water Resour. Res. 41: 5. 1001-1017.
16.Pourreza Bilondi, M., Akhoond Ali, A.M., Gharaman, B., and Telvari, A.R. 2015.
Uncertainty analysis of a single event distributed rainfall-runoff model by using two
different Markov Chain Monte Carlo methods. J. Water Soil Conservation. 21: 5. 1-26.
(In Persian)
17.Salamon, P., and Feyen, L. 2009. Assessing Parameter, Precipitation and Predictive
Uncertainty in a Distributed Hydrological Model Using Sequential Data Assimilation with
the Particle Filter. J. Hydrol. 376: 428-442.
18.Sorooshian, S., Duan, Q., and Gupta, V.K. 1993. Calibration of rainfall-runoff models:
application of global optimization to the soil moisture accounting model. Water Resour. Res.
29: 4. 1185-1194.
19.Vrugt, J.A.C., Diks, G.H., Gupta, H.V., Bouten, W., and Verstraten, J.M. 2005. Improved
treatment of uncertainty in hydrologic modeling: Combining the strengths of global
optimization and data assimilation. Water Resour. Res. 41: 1-17.
20.Weerts, A.H., and El Serafy, G.Y.H. 2006. Particle filtering and ensemble Kalman filtering
for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res.
42: W09403.