2; Abasi, F., Babaeyan, A., Malbosi, Sh., Asmari, M., and Goli Mokhtari, L. 2012. Assessment
of climate change in the coming decades (2025 to 2100) using General Circulation Model’s
downscaling climate data. J. Geograph. Res. 1: 27. 205-230. (In Persian)
2.Abasnia, M., Tavosi, T., Khosravi, M., and Torous, H. 2016. Uncertainty analysis of future
changes in daily maximum temperatures over Iran by GIS. Geographical Data. 25: 97. 29-43.
(In Persian)
3.Alexander, L., Zhang, X., Peterson, T., Caesar, J., Gleason, B., Klein Tank, A., Haylock, M.,
Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J.,
Griffiths, G., Vincent, L., Stephenson, D., Burn, J., Aguilar, E., Brunet, M., Taylor, M.,
New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. 2006. Global observed
changes in daily climate extremes of temperature and precipitation. J. Geophysic. Res. Atm.
111, D05. 1-22.
1- With of margin
4.Alexandru, A., and Sushama, L. 2015. Current climate and climate change over India as
simulated by the Canadian Regional Climate Model. Climate Dynamics. 45: 1059-1084.
5.Ansari, H., Khadivi, M., Saleh Niya, N., and Babaiyan, A. 2014. Evaluation of uncertainty of
LARS-WG under scenario A1B, A2 and B1 in predicting precipitation and temperature
(Case Study: Mashhad synoptic station). J. Irrig. Drain. 4: 8. 664-672. (In Persian)
6.Arnell, N. 2004. Climate change and global water resources: SRES emissions and
socio-economic scenarios. Global Environmental Change. 14: 131-52.
7.Ashofte, P., and Massah, A.R. 2009. Uncertainty of climate change impact on the
flood regime. Case study: Aidoghmoush basin, East Azarbaijan. Water Resources Research.
5: 2. 27-39.
8.Ashraf, B., Alizadeh, A., Mousavi Baygi, M., and Bannayan Aval, M. 2013. Verification of
temperature and precipitation data simulated by implementing individual and group five
AOGCM models for North East Iran. J. Soil Water (Agricultural Science and Technology).
2: 28. 253-266. (In Persian)
9.Babaiyan, A., and Najafi Nik, Z. 2006. Introduction and evaluation of LARS-WG to simulate
meteorological parameters Khorasan period (2003-1961). Quarterly maker. 62: 49-65.
(In Persian)
10.Chen, J., Brissettea, F.P., Chaumontb, D., and Braunb, M. 2013. Performance and
uncertainty evaluation of empirical downscaling methods in quantifying the climate change
impacts on hydrology over two North American river basins. J. Hydrol. 479: 4. 200-214.
11.Christensen, J., and Christensen, O. 2007. A summary of the PRUDENCE model projections
of changes in European climate by the end of this century. Climatic Change. 81: 7. 7-30.
12.Ebrahim, G.Y., Jonoski, A., Griensven, A., and Baldassarre, G.D. 2013. Downscaling
technique uncertainty in assessing hydrological impact of climate change in the Upper Beles
River Basin, Ethiopia. J. Hydrol. Res. 44: 2. 37-44.
13.Efron, B., and Tibshirani, V. 1993. An introduction to the bootstrap. Chapman and Hall,
New York.
14.Etemadi, E., Samadi, Z., and Sharifikia, M. 2014. Uncertainty analysis of statistical
downscaling models using general circulation model over an international wetland. Climate
Dynamics. 42: 2899-2920.
15.Fowler, H.J., Blenkinsop, S., and Tebaldi, C. 2007. Linking climate change modeling to
impacts studies: Recent advances in downscaling techniques for hydrologic modeling. Inter.
J. Climatol. 27: 1547-1578.
16.Gao, Y., Lu, J., and Leung, L.R. 2016. Uncertainties in projection future changes
in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Clim.
29: 18. 6711-6726.
17.Ghandi, A. 2015. Evaluation of uncertainty in estimates of climate parameters by different
statistical downscaling methods. Master thesis, University of Gonbad.
18.Ghermez Cheshmeh, B., Rasoli, A., Rezayi Banafsheh, M., Mesah Bavani, A., and Khorshid
Dost, A. 2015. Evaluation of uncertainty in the simulated neural network handling
HADCM3 using bootstrap confidence intervals. J. Engin. Water. Manage. 3: 7. 306-316.
(In Persian)
19.Graham, P., Hagemann, S., Juan, S., and Beniston, M. 2007. On interpreting hydrological
change from regional climate models. J. Clim. Change. 81: 97-122.
20.Hoshmand, D., and Khordadi, M.J. 2014. Uncertainty Assessment of AOGCMs and
Emission Scenarios in Climatic Parameters Estimation (Case Study in Mashhad Synoptic
Station). Geography and Environmental Hazards. 3: 11. 77-92. (In Persian)
21.Hughes, D.A., Mantel, S., and Mohobane, T. 2014. An assessment of the skill of downscaled
GCM outputs in simulating historical patterns of rainfall variability in South Africa.
Hydrology Research. 45: 1. 134-147.
22.Huth, R. 2004. Sensitivity of local daily temperature change estimates to the selection of
downscaling models and predictors. J. Clim. 17: 640-652.
23.Kent, C., Chadwick, R., and Rowell, P.D. 2015. Understanding Uncertainties in Future
Projections of Seasonal Tropical Precipitation. J. Clim. 28: 4390-4413.
24.Knutti, R. 2008. Should we believe model predictions of future climate change,
Philosophical transactions Series A. Mathematical, Physical and Engineering Sciences.
366: 1885. 4647-4664.
25.Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. 2010. Challenges in combining
projections from multiple climate models. J. Clim. 23: 10. 2739-2758.
26.Kohi, M., and Sanayi Nejad, H. 2013. Climate change scenarios based on the results of the
two methods of handling statistical downscaled variable reference evapotranspiration in
Orumiyeh. J. Irrig. Drain. 4: 7. 559-574. (In Persian)
27.Kripalanai, R.H., and Kulkarni, A. 2007. South Asian summer monsoon precipitation
variability, 2007: coupled climate model simulations and projections under IPCC AR4.
Theor. Appl. Climatol. 90: 133-159.
28.Kumar, P., Wiltshire, A., Mathison, C., Asharaf, Sh., Ahrens, B., Lucas-Picher, P.,
Christensen, H.J., Gobiet, A., Saeed, F., Hagemann, S., and Jacob, D. 2013. Downscaled
climate change projections with uncertainty assessment over India using a high resolution
multi-model approach. Science of the Total Environment. 468: 18-30.
29.Lavaysse, C., Vrac, M., Drobinski, P., Lengaigne, M., and Vischel, T. 2012. Present
and projection in an anthropogenic scenario. Natural Hazards and Earth System Science.
12: 3. 651-670.
30.Meinshausen, M., Raper, S., and Wigley, T. 2008. Emulating IPCC AR4 atmosphere ocean
and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures:
MAGICC 6.0. Atmospheric Chemistry and Physics Discussions. 8: 2. 6153-6272.
31.Mojtahedi, S.M.H., and Oo, B.L. 2014. Coastal buildings and infrastructure flood risk
analysis using multi-attribute decision-making. J. Flood Risk Manage. 9: 1. 87-96.
32.Pir moradian, N., Hadinia, H., and Ashrafzadeh, A. 2016. Prediction of Minimum and
Maximum Temperature, Radiation and Precipitation in Rasht Synoptic Station under
Different Climate Change Scenarios. J. Geograph. Plan. 20: 55. 29-44. (In Persian)
33.Rowell, D.P., Senior, C.A., Vellinga, M., and Graham, R.J. 2016. Can climate projection
uncertainty be constrained over Africa using metrics of contemporary performance? Climate
Change. 134: 621-633.
34.Samadi, S., Wilson, A.M.E., and Moradkhani, H. 2013. Uncertainty analysis of statistical
downscaling models using Hadly Center Coupled Model. Theoretical and Applied
Climatology. 113: 3-4. 673-690.
35.Semenov, M., and Stratonovitch, P. 2010. Use of multi-model ensembles from global climate
models for assessment of climate change impacts. Climate Research. 41: 1-14.
36.Sheffield, J., and Wood, E. 2008a. Global Trends and Variability in Soil Moisture and
Drought Characteristics, 1950-2000, from Observation-Driven Simulations of the Terrestrial
Hydrologic Cycle. J. Clim. 21: 3. 432-458.
37.Sheffield, J., and Wood, E. 2008b. Projected changes in drought occurrence under future
global warming from multi-model, multi-scenario. IPCC AR4 simulations, Climate
Dynamics. 31: 1. 79-105.
38.Stainforth, D., Allen, M., Tredger, E., and Smith, L. 2007. Confidence, uncertainty and
decision-support relevance in climate predictions. Philosophical Transactions of the Royal
Society A – Mathematical. Physical and Engineering Sciences. 365: 2145-2161.
39.Sunyer, M.A., Hundecha, Y., Lawence, D., Willems, P., Martinkova, M., Vormoor, K.,
Burger, G., Hanel, M., Kriauciuniene, J., Loukas Osuch, M., and Yucel, I. 2014.
Inter-comparison of projection of extreme precipitation in Europe. Hydrology and Earth
System Sciences Discussions. 11: 6167-6214.
40.Tao, H., Gemmer, M., Jiang, J., Lai, X., and Zhang, Z. 2012. Assessment of CMIP3 climate
models and projected changes of precipitation and temperature in the Yangtze River Basin,
China. Climate Change. 111: 737-751.
41.Tebaldi, C., and Knutt, R. 2007. The use of the multi-model ensemble in probabilistic
climate projections, Philosophical Transactions of the Royal Society. Series A.
Mathematical. Physical and Engineering Sciences. 365: 1857. 2053-2075.
42.Turley, M.C., and Ford, E.D. 2009. Definition and calculation of uncertainty in ecological
process models. Ecological Modelling. 220: 1968-1983.
43.van Asselt, M., and Rotmans, J. 2002. Uncertainty in Integrated Assessment Modelling.
Climatic Change. 54: 1-2. 75-105.
44.Vasiliades, L., Loukas, A., and Patsonas, G. 2009. Evaluation of a statistical downscaling
procedure for the estimation of climate change impacts on droughts. Natural Hazards and
Earth System Science. 9: 3. 879-894.
45.Yu, W., Nakakita, E., Kim, S., and Yamaguchi, K. 2016. Impact assessment of uncertainty
propagation of ensemble NWP rainfall to flood forecasting with catchment scale. Advances
in Meteorology. 2016: 1-17.
46.Zhang, H., Huang, G., Wang, D., and Zhang, X. 2011. Uncertainty assessment of climate
change impacts on the hydrology of small prairie wetlands. J. Hydrol. 396:1-2. 94-103.
47.Zhang, X., Zwiers, F.W., Hegerl, G.C., Lambert, F.H, Gillett, N.P, Solomon, S., Stott, P.,
and Nozawa, T. 2007. Detection of human influence on twentieth century precipitation
trends. Nature. 448: 461-465