1.Abdollahi Asadabadi, S., Dinpashoh, Y., and Mirabbasi, R. 2014. Forecasting of mean daily runoff discharge of Behesht-Abad river using wavelet analysis. J. Water Soil. 28: 3. 534-545. (In Persian)
2.Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome. 300: 9. D05109.
3.Amarasinghe, U.A., and Smakhtin, V. 2014. Global water demand projections: past, present and future. International Water Management Institute. 156: 32. 12-15.
4.Bachour, R., Maslova, I., Ticlavilca, A., Walker, W., and McKee, M. 2015. Wavelet-multivariate relevance vector machine hybrid model for forecasting daily evapotranspiration. Stochastic Environmental Research and Risk Assessment. 29: 2. 1-15.
5.Hassanzadeh, Y., Abdi Kordani, A., and Fakheri Fard, A. 2012. Drought forecating using genetic alghorithm and conjoiend Neural network-wavelet. J. Water Wastewater. 23: 3. 48-59. (In Persian)
6.Kisi, O. 2008. The potential of different ANN techniques in evapotranspiration modeling. Hydrological Processes. 22: 14. 2449-2460.
7.Landeras, G., Ortiz-Barredo, A., and López, J.J. 2009. Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J. Irrig. Drain. Engin. 135: 3. 323-334.
8.Najafzadeh, M., and Barani, G.A. 2011. Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Scientia Iranica. 18: 6. 1207-1213.
9.Najafzadeh, M., Barani, G.A., and Azamathulla, A. 2014. Prediction of pipeline scour depth in clear- water and live-bed conditions using group method of data handling. Neural Computing and Applications. 24: 3-4. 629-635.
10.Najafzadeh, M., Barani, G.A., and Hessami-Kermani, M. 2013. Abutment scour in live-bed and clear-water using GMDH Network. Water Science and Technology. 67: 5. 1121-1128.
11.Najafzadeh, M., Barani, G.A., and Azamathulla. H.M. 2013. GMDH to Predict Scour Depth around Vertical Piers in Cohesive Soils. Applied Ocean Research. 40: 2. 35-41.
12.Nourani, V., Hosseini Baghanam, A., Adamowski, J., and Kisi, O. 2014. Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. J. Hydrol. 51: 4. 358-377.
13.Rajaee, T., and Ebrahimi, H. 2014. Monthly simulation of groundwater fluctuations using wavelet and dynamic neural network. J. Water Irrig. Manage. 4: 1. 73-87. (In Persian)
14.Sharzei, Gh.A., Ahrari, M., and Fakhraei, H. 2009. Forecasting of Urban Demand for
Water in Tehran Using Structural, Time Series and GMDH Neural Networks Models: A Comparative Study. J. Econ. Res. 43: 3. 1-25. (In Persian)
15.Shoaib, M., Shamseldin, A.Y., Melville, B.W., and Khan, M.M. 2015. Runoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approach. J. Hydrol.
527: 326-344.
16.Tabari, H., Marofi, S., and Sabziparvar, A.A. 2010. Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrigation Sci. 28: 5. 399-406.
17.Toufani, P., Mosaedi, A., and Fakheri Fard, A. 2012. Prediction of Precipitation Applying Wavelet Network Model (Case study: Zarringol station, Golestan province, Iran). J. Water Soil. 25: 5. 1217-1226. (In Persian)
18.Trajkovic, S., Todorovic, B., and Stankovic, M. 2003. Forecasting of reference evapotranspiration by artificial neural networks. J. Irrig. Drain. Engin. 129: 6. 454-457.