1.Agyare, W.A., Park, S.J., and Vlek, P.L.G. 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone J. 6: 423-431.
2.Amini, M., Abbaspour, K.C., Khademi, H., Fathianpour, N., Afyuni, M., and Schulin, R. 2005. Neural network models to predict cation exchange capacity in arid regions of Iran. Europ. J. Soil Sci. 56: 551-559.
3.Bayat, H., Davatgar, N., and Jalali, M. 2014. Prediction of CEC using fractal parameters by artificial neural networks. International Agrophysics. 28: 143-152.
4.Burt, R. 2014. Soil survey laboratory methods manual. Soil survey investigations report No. 42, Version 5. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center.
5.Esmaeelnejad, L. 2008. Investigation on physicochemical and mineralogical properties of the marls and their effect on soil erosion in the south of Guilan province. M.Sc. Thesis, Faculty of Agriculture, University of Guilan, 165p.
6.Esmaeelnejad, L., Ramezanpour, H., Seyedmohammadi, J., and Shabanpour, M. 2015. Selection of a suitable model for the prediction of soil water content in north of Iran. Spanish J. Agric. Res. 13: 1. 12-2.
7.Ghorbani Dashtaki, S., Homaee, M., and Khodaverdiloo, H. 2011. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management. 26: 68-74.
8.Haverkamp, R., Leij, F.J., Fuentes, C., Sciortino, A., and Ross, P.J. 2005. Soil water retention. I. Introduction of shape index. Soil Sci. Soc. Amer. J. 69: 1881-1890.
9.Horn, R., Fleige, H., Richter, F.H., Czyz, E.A., Dexter, A., Diaz-Pereira Damitru, E., Enarche, R., Mayol, F., Rajkai, K., Delarosa, D., and Simota, C. 2005. SIDASS project 5: prediction of mechanical strength of arable soils and its effects on physical properties at various map scales. Soil and Tillage Research. 82: 47-56.
10.Khodaverdiloo, H., Homaee, M., van Genuchten, M.T., and Ghorbani Dashtaki, S. 2011. Deriving and validating pedotransfer functions for some calcareous soils. J. Hydrol. 399: 93-99.
11.Kianpoor, K.Y., Rezaie, A.R., Amerikhah, H., and Sami, M. 2012. Comparison of multiple linear regressions and artificial intelligence-based modeling techniques for prediction the soil cation exchange capacity of Aridisols and Entisols in a semiarid region. Austr. J. Agric. Engin. 3: 39-46.
12.McBratney, A.B., Minasny, B., Cattle, S.R., and Vervoort, R.W. 2002. From pedotransfer functions to soil inference systems. Geoderma. 109: 41-73.
13.Merdun, H., Cinar, O., Meral, R., and Apan, M. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research. 90: 108-116.
14.Mosaddeghi, M.R., and Mahboubi, A.A. 2011. Point pedotransfer functions for prediction of water retention of selected soil series in a semi-arid region of western Iran. Archives of Agronomy and Soil Science. 57: 327-342.
15.Rawls, W.J., and Pachepsky, Y.A. 2002. Soil consistence and structure as predictors of water retention. Soil Sci. Soc. Amer. J. 66: 1115-1126.
16.Sarmadian, F., Azimi, S., Keshavarzi, A., and Ahmadi, A. 2013. Neural computing model for prediction of soil cation exchange capacity: A data mining approach. Inter. J. Agron. Plant Prod. 4: 7. 1706-1712.
17.Sarmadian, F., Taghizadeh Mehrjardi, R., and Akbarzadeh, A. 2009. Modeling of some soil properties using artificial neural network and multivariate regression in Gorgan province, north of Iran. Austur. J. Bas. Appl. Sci. 3: 1. 323-329.
18.Seybold, C.A., Grossman, R.B., and Reinch, T.G. 2005. Predicting cation exchange capacity for soil survey using linear models. Soil Sci. Soc. Amer. J. 69: 856-886.