1.Araújo, M.B., Thuiller, W., Williams, P.H., and Reginster, I. 2005. Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography. 14: 1. 17-30.
2.Bagheri Bodaghabadi, M., Salehi, M.H., Mohammadi, J., Toomanian, N., and Esfandiarpour Boroujeni, I. 2011. Efficiency of digital elevation model and its attributes for soil mapping using Soil-Land Inference Model (SoLIM). J. Water Soil. 25: 5. 1106-1118. (In Persian)
3.Barbosa, A.M., Real, R., Olivero, J., and Vargas, J.M. 2003. Otter (Lutra lutra) distribution modeling at two resolution scales suited to conservation planning in the Iberian Peninsula. Biological Conservation. 114: 377–387.
4.Beckett, P., and Webster, R. 1971. Soil variability: a review. Soils and Fertilizers. 34: 1-15.
5.Bierkens, M.F.P., Finke, P.A., and Willigen, P.D. 2000. Upscaling and Downscaling Methods for Environmental Research. Kluwer Academic Publishers, Dordrecht.
6.Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. 1984. Classification and regression. Tress. Wadsworth, Belmont, CA.
7.Fatehi, Sh. 2008. Semi-detailed soil survey of Merek plain in Karkheh river basin. Soil and Water Research Institute, 54p. (In Persian)
8.Finke, P.A., Bouma, J., and Hoosbeek, M.R.E. 1998. Soil and water quality at different scales. Kluwer, Dordrecht, the Netherlands.
9.Grunwald, S. 2009. Multi-criteria characterization of recent digital soil mapping and modelling approaches. Geoderma. 152: 195-207.
10.Hastie, T., Tibshirani, R., and Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Second Edition), 780p.
11.Hengl, T. 2006. Finding the right pixel size. Computers & Geosciences. 32: 1283-1298.
12.Hengl, T., Toomanian, N., Reuter, H.I., and Malakouti, M.J. 2007. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma. 140: 4. 417-427.
13.Jafari, A., Ayoubi, Sh., and Khademi, H. 2012. Application of Regression Models for Prediction of Soil Classes in Some Regions of Central Iran (Zarand district, Kerman Province). J. Water Soil. 25: 6. 1353-1364. (In Persian)
14.Kerry, R., Goovaerts, P., Rawlins, B.G., and Marchant. B.P. 2012. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma. 170: 347-358.
15.Lagacherie, P., and McBratney, A.B. 2007. Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping, P 3-22. In: P. Lagacherie, et al. (Eds.), Digital soil mapping: Anintroductory perspective. Elsevier, New York.
16.Lin, A. 1989. Concordance correlation-coefficient to evaluate reproducibility. Biometrics. 45: 255-268.
17.Luoto, M., and Hjort, J. 2005. Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorph. 67: 299-315.
18.Malone, B.P., McBratney, A.B., Minasny, B., and Laslett, G.M. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma. 154: 138-152.
19.Malone, B.P., Mcbratney, A.B., Minasny, B., and Wheeler, I. 2012. General method for downscaling earth resource information. Computers & Geosciences. 41: 119-125.
20.Malone, B.P., McCartney, A.B., and Minasny, B. 2013. Spatial Scaling for Digital Soil Mapping. Soil Sci. Soc. Am. J. 77: 890-902.
21.McBratney, A.B. 1998. Some considerations on methods for spatially aggregating and disaggregating soil information. Nutrient Cycling in Agroecosystems. 50: 51-62.
22.McPherson, J.M., Jetz, W., and Rogers, D.J. 2006. Using coarse-grained occurrence data to predict species distributions at finer spatial resolutions–possibilities and limitations. Ecological Modeling. 192: 499-522.
23.Merlin, O., Walker, J.P., Chehbouni, A., and Kerr, Y. 2008. Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sensing of Environment. 211: 3935-3946.
24.Nabiollahi, K., Haidari, A., and Taghizadeh-Mehrjerdi, R. 2014. Digital Mapping of Soil Texture Using Regression Tree and Artificial Neural Network in Bijar, Kurdistan. J. Water Soil. 28: 5. 1025-1036. (In Persian)
25.Pouteau, R., Rambal, S., Ratte, J.P., Gogé, F., Joffre, R., and Winkel, T. 2011. Downscaling MODIS-derived maps using GIS and boosted regression trees: The case of frost occurrence over the arid Andean highlands of Bolivia. Remote Sensing of Environment. 115: 117-129.
26.Rouse, J.W., Hass, R.H.J., Schell, A., Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351, Vol. 1, Washington, DC. Pp: 309-317.
27.Samuel-Rosa, A., Heuvelink, G.B.M., Vasques, G.M., and Anjos, L.H.C. 2015.
Do more detailed environmental covariates deliver more accurate soil maps? Geoderma. 243-244: 214-227.
28.Taghizadeh-Mehrjardi, R., Minasny, B., McBratney, A.B., Triantafilis, J., Sarmadian, F., and Toomanian, N. 2012. Digital soil mapping of soil classes using decision trees in central Iran, P 197-202. In: Minasny, B., B.P. Malone and A.B. McBratney (Eds.), Digital Soil Assessment and Beyond. CRC, London.
29.Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, P.B. 2013. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213: 15-28.
30.Taylor, J.A., Jacob, F., Galleguillos, M., Prévot, L., Guix, N., and Lagacherie, P. 2013. The utility of remotely-sensed vegetative and terrain covariates at different spatial resolutions in modelling soil and water table depth (for digital soilmapping). Geoderma. 193: 83-93.
31.Van Deventer, A.P., Ward, A.D., Gowda, P.H., and Lyon, J.G. 1997. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogrammetric Engineering & Remote Sensing. 63: 87-93.
32.Xiao, J., Shen, Y., Tateishi, R., and Bayaer, W. 2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Inter. J. Rem. Sens. 27: 2411-2422.
33.Zinck, J.A. 1989. Physiography and soils. Lecture notes for K6 course. Soils Division, (ITC), Enschede, the Netherlands, 132p.