ارزیابی و پیش‌بینی خشکسالی‌های آب زیرزمینی با استفاده از شاخص GRI و مدل‌های زنجیره مارکف مرتبه اول تا سوم (مطالعه موردی: دشت بروجن)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 منابع آب

2 دانشیار گروه مهندسی آب/دانشگاه شهرکرد معاون پژوهشی مرکز تحقیقات منابع آب

3 دانشیار دانشگاه شهرکرد

4 استادیار گروه مهندسی آب دانشگاه شهرکرد

چکیده

سابقه و هدف: مدیریت منابع آب بخصوص آب‌های زیرزمینی در مناطق خشک و نیمه‌خشک از اهمیت خاصی برخوردار است. یکی از موارد مهم در مدیریت بهینه منابع آب پیش‌بینی شرایط خشکسالی می باشد. آب‌های زیرزمینی بعنوان منبع اصلی تأمین آب مصرفی در بخش‌های کشاورزی، صنعت و شرب در دشت‌ بروجن محسوب می‌شود. از این‌رو، بررسی وضعیت خشکسالی منابع آب زیرزمینی در برنامه‌ریزی و مدیریت پایدار این منابع بسیار حائز اهمیت است. تاکنون روش‌های مختلفی توسط محققان برای پیش‌بینی انواع مختلف خشکسالی‌ها توسعه داده شده و مورد استفاده قرار گرفته است. یکی از این روش‌ها پیش‌بینی وضعیت رطوبتی با زنجیره مارکف می‌باشد. در اغلب مطالعات پیشین در زمینه پیش‌بینی خشکسالی‌ها، از زنجیره مارکف مرتبه اول و دوم استفاده شده است. در پژوهش حاضر، خشکسالی‌های آب زیرزمینی در دشت بروجن در طی سال‌های 1364 تا 1394 مورد ارزیابی قرار گرفت و شرایط رطوبتی این دشت با استفاده از زنجیره مارکف مرتبه سوم پیش‌بینی شد.
مواد و روش‌ها: به منظور ارزیابی خشکسالی‌های آب زیرزمینی دشت بروجن مقادیر شاخص GRI در مقیاس‌های زمانی 1، 3، 6 و 12 ماهه محاسبه شد. بدین منظور، از آمار تراز آب زیرزمینی 13 چاه مشاهده‌ای در دشت بروجن در دوره 31 ساله (94-1364) استفاده شد. برای پیش‌بینی مقادیر شاخص GRI در ماه‌های آتی در دشت بروجن از روش زنجیره مارکف با مرتبه‌های اول، دوم و سوم استفاده گردید و عملکرد این مدل با روش جدول توافقی مورد ارزیابی قرار گرفت. بعد از تهیه جدول توافقی برای زنجیره مارکف مرتبه اول، دوم و سوم، مقادیر آماره‌های CSI، POD و FAR محاسبه شد.
مقدار CSI برای دشت بروجن در مقیاس‌های زمانی یک، سه و شش و دوازده ماهه برای مدل مارکف مرتبه اول بترتیب برابر برابر 58/0، 50/0، 1 و 1، برای مدل مارکف مرتبه دوم در مقیاس‌های زمانی یک، سه و شش ماهه بترتیب برابر 45/0، 33/0 و 1 و برای مارکف مرتبه سوم در مقیاس‌های زمانی یک، سه و شش ماهه به ترتیب برابر 40/0، 38/0 و 1 بدست آمد که نشانگر مهارت متوسط روش پیشنهادی در مقیاس یک و سه ماهه پیش‌بینی شرایط رطوبتی و مهارت خوب آن در مقیاس شش ماهه پیش‌بینی شرایط رطوبتی بود. همچنین نقشه های پهنه‌بندی شاخص GRI در این دشت با انتخاب مناسب‌ترین روش درونیابی، ترسیم گردید.
یافته‌ها: نقشه پهنه‌بندی شاخص GRI در دشت بروجن نشان می‌دهد قسمت‌های میانی دشت اغلب با خشکسالی شدید مواجه شده است. مقایسه عملکرد مرتبه‌های مختلف زنجیره مارکف در پیش‌بینی شرایط رطوبتی دشت بروجن بر اساس آماره‌های CSI، POD و FAR نشان داد که روش زنجیره مارکف مرتبه اول از دقت بیشتری در پیش‌بینی مقادیر شاخص GRI در تمام مقیاس‌های زمانی برخوردار بوده است، لذا از آن می‌توان برای پیش‌بینی خشکسالی آب زیرزمینی دشت بروجن استفاده کرد.
نتیجه گیری: نتایج حاصل از بررسی شاخص GRI در دشت بروجن نشان داد که در دوره زمانی مورد بررسی، دوره خشکسالی آب زیرزمینی در سال 1387 شروع شده است. به طور کلی خشکسالی‌های شدیدی که در سال‌های اخیر به دلیل کاهش نزولات جوی رخ داده است، به همراه اضافه برداشت از چاه‌های موجود در دشت، منطقه را با بحران شدید کاهش سطح آب زیرزمینی مواجه کرده که کاهش کیفیت آب و فرونشست زمین را در پی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring and Forecasting of Groundwater Drought Using Groundwater Resource Index (GRI) and First to Third- Order Markov Chain Models (Case study: Boroujen Plain)

نویسندگان [English]

  • Amir Khosravi 1
  • Rasoul Mirabbasi 2
  • Hossein Samadi Boroujeni 3
  • Ahmad Reza Ghasemi Dastgerdi 4
1 water recourses
2 Associate Professor, Department of Water Engineering, Shahrekord University
3 Associate Professor/Shahrekord University
4 Assistant Professor/Shahrekord University
چکیده [English]

Background and objectives: Management of water resources, especially groundwater, is important in arid and semi-arid regions. One of the important issues in optimum water resources management is the prediction of drought conditions. Groundwater is considered as the main resources of water supply for agriculture, industry and drinking uses in Boroujen plain. Therefore, it is important to investigate the drought condition of groundwater resources in the planning and sustainable management of these resources. So far, various methods have been developed and used by researchers to predict different types of droughts. One of these methods is the prediction of wetness conditions by the Markov chain. In most of the previous studies in the field of drought prediction, the Markov chain of first and second orders have been used. In this study, groundwater droughts in Boroujen Plain during the years 1985 to 2015 are assessed and the wetness conditions of this plain are predicted using the third order Markov chain model.
Materials and Methods: In order to assess the groundwater droughts in the Borujen Plain, the GRI index values were calculated on the time scales of 1, 3, 6 and 12 months. For this purpose, the data of groundwater level of 13 piezometric wells in Boroujen plain during a 31 year period (1985-2015) was used. In order to predict the GRI index values in Broujen plain for the next months, the first, second and third- order Markov chain models were used and the performance of these models was evaluated based on contingency table method. After forming the contingency table from the results of first, second and third- order Markov chain models, the values of CSI, POD and FAR statistics were calculated.
The CSI values for Broujen plain in the time scales of 1, 3, 6 and 12 months for the first order Markov chain model were calculated equal to 0.58, 0.50, 1.0 and 1.0, respectively. The CSI values for the second order Markov chain model in the time scales of 1, 3 and 6 months were obtained equal to. 0.45, 0.33 and 1.0, and for third order Markov chain model equal to 0.40, 0.38 and 1.0, respectively, which indicate the medium skill of the developed method in the prediction of wetness conditions at 1 and 3 months time scales, and good skill at 6 months’ time scale. Also, the delineation maps of GRI index were drawn by selecting the most suitable interpolation method.
Results: The delineation map of GRI in the Broujen Plain shows that the middle parts of the plain often experienced severe droughts. Comparing the performance of different orders of Markov chain in predicting the wetness conditions of Boroujen plain based on CSI, POD and FAR statistics showed that first order Markov chain method presented more accurate results than other models in predicting GRI values in all time scales. Therefore, it can be used to predict the groundwater drought in Boroujen Plain.
Conclusion: The results of the GRI survey for Boroujen plain showed that during the period under study, the drought spell of groundwater began in 2008. In general, the severe droughts that have occurred in recent years due to reduce atmospheric precipitation, along with the overexploitation of groundwater have caused the severe decline in groundwater levels, which leads to groundwater quality degradation and land subsidence in the Boroujen plain.

کلیدواژه‌ها [English]

  • Groundwater drought
  • Drought prediction
  • GRI index
  • Broujen aquifer
  • Markov chain
1.Ahmad-Akhoormeh, M., Nouhegara
Soleimani Motlagh, M., and VataiSemirimi, M. 2015. Investigation of
Groundwater Drought by Using SWI and
GRI Indices in Marvdasht Kharameh Fars
province Aquifer. The Iranian Society
of Irrigation and Water Engineering.
21: 118-105. (In Persian)
2.Arritt, R.W., and Frank, W.M. 1985.
Experiments in probability of
precipitation amount forecasting using
model output statistics. Monthly Weather
Review. 113: 1837-1851.
3.Baziyarpoor, H., and Nadi, M. 2017.
Probabilistic analysis of drought severity
classes by using Markov chain model
in different climates of Iran. The
Second National Iranian Conference
on Hydrology. 20 July. Shahrekord
University. Shahrekord. (In Persian)
4.Bettge, A.G., Baumhefne, D.P., and
Chervin, R.M. 1981. On the verification
of seasonal climate forecasts. Bulletin
of the American Meteorological Society.
62: 1654-1665.
5.Das, S., Choudhury, R.M., Gandhi, S.,
and Josh, V. 2016. Application of earth
observation data and Standardized
Precipitation Index based approach for
meteorological drought monitoring,
assessment and prediction over Kutch,
Gujarat, India. Inter. J. Environ. Geoinf.
3: 2. 24-37.
6.Doswell, C.A., III and Flueck, J.A. 1989.
Forecasting and verifying in a field
research project: DOPLIGHT 87.
Weather and Forecasting. 4: 97-109.
7.Donaldson, R., Dyer, R., and Krauss, M.
1975. An objective evaluator of
techniques for predicting severe weather
events. Preprints, Ninth Conf. on Severe
Local Storms. American Meteorological
Society, Norman. OK. Pp: 321-326.
8.Gabriel, K.R., and Neumann, J. 1962. A
Markov chain model for daily rain fall
occurrence at Tel Aviv. Quar. J.
Meteorol. Soc. 88: 90-95.
9.Gandin, L.S., and Murphy, A.H. 1992.
Equitable skill scores for categorical
forecasts. Mon. Wea. Rev. 120: 361-370.
10.Kostopoulou, E., Bianrakopoulos, C.,
Krapsiti, D., and Karali, A. 2017.
Temporal and Spatial Trends of the
Standardized Precipitation Index (SPI)
in Greece Using Observations and
Output from Regional Climate Models.
Perspectives on Atmospheric Sciences.
Springer International Publishing.
Pp: 475-481.
11.MacDonald, A., Calow, M.R.C.,
MacDonald, D.M.J., Darling, W.G., and
Dochartaigh, Ó. 2009. What impact
will climate change have on rural
water supplies in Africa. Hydrol. Sci. J.
54: 4. 691-703.
12.McCoy, M.C. 1986. Severe-stormforecast results from the PROFS 1983
forecast experiment. Bulletin of the
American Meteorological Society.
67: 155-164.
13.Mendicino, G.A., and Senatore, P. 2008.
A Groundwater Resource Index (GRI)
for drought monitoring and forecasting
in a Mediterranean climate. Hydrol. J.
357: 282-302.
14.Meddi, H., Meddi, M., and Assani, A.
2014. Study of drought in seven
Algerian plains, Arabi. J. Sci. Engin.
39: 339-359.
15.Mishra, A.K., and Singh, V.P. 2010. A
review of drought concepts. J. Hydrol.
391: 202-216.
16.Mourad, L., Brucker, J.M., Mourad, L.,
Soltane, A., and Mounir, S. 2015.
Analysis of drought areas in Northern
Algeria using Markov chains. J. Sci.
Syst. 124: 1. 61-70.
17.Piyadasa, P.M., and Sonnadara, D.U.J.
2010. Analysis of wet and dry behavior
of weather through Markov models,
Proceedings of the Technical Sessions.
Pp: 25-32.
18.Villholth, K.G., Tottrup, C., Stendel, M.,
and Maherry, A. 2013. Integrated
mapping of groundwater drought risk in
the Southern African Development
Community (SADC) region. Hydrogeol.
J. 21: 4. 863-885.
19.Wilhite, D.A., and Glantz, M.H. 1985.
Understanding the drought phenomenon:
The role of definition. Water
International. 10: 111-120.
20.Wilks, D.S. 1995. Statistical Methods
in the Atmospheric Sciences: An
Introduction. Academic Press. 467p.