تعیین بهترین روش دمایی برآورد تبخیر از سطح مخزن سد کارده به منظور بررسی تاثیر کاهش حجم مفید مخزن بر مقدار افزایش تبخیر از سطح دریاچه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد

2 دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه احیاء مناطق خشک و کوهستانی، دانشگاه تهران

3 دانشیار گروه زمینشناسی، دانشگاه فردوسی مشهد

4 استادیار گروه مرتع و آبخیزداری، دانشگاه فردوسی مشهد

چکیده

سابقه و هدف: کم‌آبی امروزه به یکی از مهم‌ترین مشکلات مردم در بسیاری از جوامع تبدیل شده است. احداث سد و ذخیره آب به منظور تامین بخشی از آب مورد نیاز و هم‌چنین کنترل سیل یکی از راه‌های همزیستی با مشکلات ناشی از کم‌آبی، سیل و یا خشکسالی است. وضعیت تبخیر از سطوح آبی دریاچه‌ها، مخازن و برکه‌ها در نحوه بهره‌برداری بهینه از منابع آبی بسیار مؤثر است. میزان تبخیر از سطح آب‌ها معمولا در مناطق خشک، بویژه در مناطقی که جریان‌های افقی انتقال حرارت به میزان قابل ملاحظه‌ای وجود دارد نسبت به مناطق مرطوب بیشتر خواهد بود. از طرف دیگر با گذشت زمان میزان رسوب‌گذاری در مخزن سد بیشتر می‌شود. یکی از مشکلات رسوب‌گذاری تغییر در هندسه مخزن و افزایش سطح دریاچه سد به ازاء مقادیر مختلف حجم جریان ذخیره می‌باشد. این امر هم به نوبه خود منجر به افزایش میزان تبخیر به دلیل افزایش سطح دریاچه سد می‌شود. بنابراین، هدف اصلی این تحقیق برآورد میزان تبخیر از سطح دریاچه سد کارده و انتخاب مناسب‌ترین روش برآورد تبخیر از سطح این دریاچه و همچنین تعیین تاثیر رسوب‌گذاری بر تبخیر از سطح دریاچه این سد می‌باشد.
مواد و روش‌ها: به منظور برآورد میزان تبخیر از سطح دریاچه سد کارده، ابتدا با استفاده از 6 روش دمایی برآورد تبخیر شامل روش‌های جنسن- هیز، هامون، استفن- استوارت، پاپاداکیس، ابتی و تورک میزان تبخیر در مقیاس‌های ماهانه، فصلی و سالانه برآورد گردید. سپس این مقادیر با داده‌های حاصل از تشت تبخیر، با استفاده از ۹ شاخص‌ ارزیابی خطا مقایسه شدند. همچنین به منظور تعیین تاثیر رسوب‌گذاری بر تبخیر از دریاچه، بر اساس هیدروگرافی‌هایی که در سال‌های آبی ۱۳۷۶-۱۳۷۵، ۱۳۸۳-۱۳۸۲ و ۱۳۸۸-۱۳۸۷ انجام شده است، سطح مخزن به ازاء هر مقدار از حجم ذخیره (۵ سناریو شامل حجم‌های ۵، ۱۰، ۱۵، ۲۰و ۲۵ میلیون متر مکعب) تعیین شد.
یافته‌ها: نتایج نشان می‌دهد که روش جنسن- هیز، بهترین روش دمایی برآورد تبخیر در مقیاس سالانه و در شرایط فقدان داده‌های اندازه‌گیری تبخیر از تشت می‌باشد. به منظور برآورد تبخیر در مقیاس ماهانه یا فصلی، روش پاپاداکیس برای فصل زمستان و روش تورک برای فصل تابستان روش‌های مناسبی خواهند بود. همچنین با کاهش حجم مفید مخزن به دلیل پدیده رسوب‌گذاری، سطح دریاچه مخزن (به ازاء هر میزانی از ذخیره جریان) افزایش می‌یابد. به طوری که این افزایش سطح با افزایش حجم ذخیره از ۵ میلیون مترمکعب به ۲۵ میلیون متر مکعب سبب افزایش میزان تبخیر به ۳ برابر حالت اول می‌گردد. به عبارت دیگر می‌توان اینگونه بیان نمود که با ۵ برابر شدن حجم ذخیره در مخزن (تغییر حجم ذخیره از ۵ به ۲۵میلیون متر مکعب) و همچنین افزایش رسوب‌گذاری حجم تبخیر از سطح مخزن ۳ برابر افزایش می‌یابد. بررسی‌ها نشان می‌دهد که تمامی روش‌ها اعم از بیش‌برآورد و یا کم‌برآورد، روند افزایشی تبخیر را با تغییر حجم ذخیره در طی سال‌های آبی ذکر شده به سبب افزایش سطح دریاچه در مخزن سد کارده نشان می‌دهند.
نتیجه‌گیری: روش جنسن-هیز به دلیل داشتن نزدیک‌ترین داده‌ها به تشت تبخیر و با کسب بیشترین امتیاز از مجموع امتیازات ۹ شاخص ارزیابی خطا در برآورد تبخیر از بین 6 روش، به عنوان بهترین روش دمایی برآورد تبخیر در شرایط فقدان داده‌های اندازه‌گیری شده تبخیر از تشت در منطقه انتخاب گردید. روش هامون در برآورد مقادیر تبخیر، کم برآوردترین روش و روش استفن-استوارت بیش برآوردترین روش می‌باشد. افزایش رسوب‌گذاری در مخزن سد سبب ارتقاء تراز آب به رقوم بالاتر در مخزن می‌شود که این موضوع با توجه به هندسه باز بودن مخزن سد کارده، افزایش سطح دریاچه را به دنبال خواهد داشت و درنهایت سبب افزایش میزان تبخیر از سطح مخزن سد می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Determination of the best temperature based method of evaporation estimation from the Karde reservoir in order to investigate the effect of reducing useful volume of the reservoir on evaporation from the lake surface

نویسندگان [English]

  • Abolfazl mosaedi 1
  • Maryam Yazdan Parast 2
  • Mohammad Hosein Mahmudy-Gharaie 3
  • Saeid Reza Khodashenas 1
  • Ali Golkariyan 4

1 Professor, Dept. of Water Science and Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2 Ph.D. Student, Dept. of Reclamation of arid and Mountainous Regions, University of Tehran, Tehran, Iran

3 Associate Prof., Dept. of Geology, Ferdowsi University of Mashhad, Mashhad, Iran

4 Assistant Prof., Dept. of Rangeland and Watershed Management, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

Background and Objectives: Nowadays water scarcity has become one of the most important problems in many communities. Construction of dams and water storage to provide part of the required water and flood control is one of the ways to coexist with problems caused by Water scarcity, flood or drought. Evaporation of lakes, reservoirs and ponds surfaces in the optimal utilization of water resources is highly effective. The evaporation of surface waters, usually in dry areas, especially in areas where heat transfer horizontal flow there is significantly will be greater than the wet areas. On the other hand, over time, the rate of sedimentation in the reservoir will increase. One of the problems of sedimentation is changes in the geometry of the reservoir and dam lake level rise to different amounts per storage volume. This in turn leads to increased evaporation due to rising levels of Lake dam. So the main purpose of this research is estimate the rate of evaporation from the lake and choose the most appropriate method for estimating evaporation from the surface of the lake and also determine the effect of sedimentation on evaporating from the surface of the lake of dam.
Materials and Methods: In order to estimate the rate of evaporation from the Kardeh lake, first by using 6 thermal evaporation method such as Jensen-Haise, Hamon, Estefen- Stewart, Papadakis, Abtew and Turc evaporation rate was estimated in monthly, quarterly and annual scale. Then these values were compared with data from pan evaporation, using nine indicators evaluate errors. Also to determine the impact of sedimentation on the evaporation of the lake of this dam, According to the Hydrographs that was conducted in the years 1375-1376, 1382-1383 and 1387-1388, reservoir levels per amount of storage volume (5 scenario includes volumes 5, 10, 15, 20 and 25 million cubic meters) was determined.
Results: The results show that Jensen-Haise method, is the best thermal method of estimating evaporation in terms of lack of pan evaporation measured data. . It should be noted that in order to estimate the evaporation in monthly or seasonally scale, Papadakis method for winter and Turc method for the summer season will be appropriate methods. Also by reducing profitable volume due to sedimentation, reservoir lake level (per amount of stored stream) increased. So that this increased level by increasing the storage volume from 5 million cubic meters to 25 million cubic meters, Evaporation rate increase to three times the first case. In other words, it can be stated that with 5 times the volume stored in the reservoir (storage volume change from 5 to 25 million cubic meters) and also increase sedimentation the volume of surface evaporation 3 times increases. . Studies show that all methods whether overestimated or underestimated, show Increased evaporation process by changing the storage volume during the mentioned years due to increase the level of the lake of Kardeh reservoir.
Conclusion: Jensen-Haise due to the closest data with pan evaporation data and earn the most points from the total score of 9 evaluation index error in estimating evaporation from between 6 ways, were selected as the best thermal method for estimating evaporation in terms of the lack of pan evaporation measured data in the region. Hamon estimation of evaporation method is the most underestimated and Etefen - Stewart method is the most overestimated method. Increasing sedimentation in the reservoir improve the water level to higher level in the reservoir, due to the openness geometry of the Kardeh reservoir, increasing the level of the lake will follow and ultimately increase the rate of evaporation from the surface of the reservoir.

کلیدواژه‌ها [English]

  • Evaporation Estimation
  • thermal methods
  • Error evaluation criteria
  • Sedimentation
  • Kardeh dam
1.Abtew, W. 2001. Evaporation estimation
for Lake Okeechobee in South Florida. J.
Irrig. Drain. Engin. 127: 140-147.
2.Abtew, W., and Melesse, M. 2013.
Evaporation and Evapotranspiration:
Measurements and Estimations. Springer
Science Business Media Dordrecht, 202p.
3.Akbari Nodehi, D. 2010. Estimation of
evaporation Pan coefficient to calculate
evapotranspiration (Case study: synoptic
station of Surrey). J. Res. Agric. Sci.
7: 65-74.
4.Allen, R.G., Pereira, L.S., Raes, D., and
Smith, M. 1998. Crop Evapotranspiration
(guidelines for computing crop water
requirements). FAO Irrigation and
Drainage Paper, No. 56.
5.Arasteh, P.D., Tajrishy, M., Mirlatifi, M.,
and Saghafian, B. 2005. Statistical model
of free water surface evaporation using
the volume balance method in Chahnimeh
reservoir, Sistan-Iran. Pajouhesh &
Sazandegi. 68: 2-14. (In Persian)
6.Araujo, J., Guntner, A., and Bronstert, A.
2006. Loss of reservoir volume by
sediment deposition and its impact on
water availability in semiarid Brazil.
Hydrol. Sci. J. 51: 1. 157-170.
7.Babamiri, O., and Dinpashoh, Y.
2015. Comparison and calibration of nine
mass transfer-based reference crop
evapotranspiration methods at Urmia
Lake Basin. J. Water Soil Cons.
21: 5. 135-152. (In Persian)
8.Baride, M., and Elyasi, G. 2008.
Estimation of the rate of evaporation from
the lake across the country with the use of
pan evaporation. The third Conference of
Iran water resources management,
Faculty of civil engineering University of
Tabriz, Tabriz.
9.Bhaskar Shirsath, P., and Kumar Singh,
A. 2010. A Comparative Study of Daily
Pan Evaporation Estimation Using ANN,
Regression and Climate Based Models.
Journal of Water Resources Management.
24: 1571-1581.
10.Chen, D., Gao, G., Xu, C., Guo, J., and
Ren, G. 2005. Comparison of the
Thornthwaite method and pan data with
the standard Penman-Monteith estimates
of reference evapotranspiration in
China. J. Clim. Res. 28: 123-132.
11.Dai, X., Shi, H., Li, Y., Ouyang, Z.,
and Huo, Z. 2009. Artificial neural
network models for estimating regional
reference evapotranspiration based on
climate factors. Hydrological Processes.
23: 442-450.
12.Dogan, E., Gumrukcuoglu, M., Sandalci,
M., and Opan, M. 2010. Modelling of
evaporation from the reservoir of
Yuvacik dam using adaptive neurofuzzy inference systems. Engineering
Applications of Artificial Intelligence.
23: 961-967.
13.Doorenbos, J., and Pruitt, W.O. 1977.
Guidelines for predicting crop water
requirements. Irrig. and Drain. Paper
No. 24, 2nd edition, Food and Agric.
Organ. of the United Nations, Rome,
Italy, 156p.
14.Dunne, T., and Leopold, L.B. 1978.
Water in Environmental Planning.
Freeman Company, New York, 818p.
15.Environment Agency. 2001. Estimation
of open water evaporation. Rio
House, Waterside Drive, Aztec West,
Almondsbury, Bristol, BS32 4UD, 144p.
16.Hamon, W.R. 1963. Computation of
direct runoff amounts from storm rainfall.
International Association of Scientific
Hydrology Publication. 63: 52-62.
17.Hashemi, S.R. 2003. Engineering hydrology,
Shoara Publishing, 381p. (In Persian)
18.Hassani, A., Tajrishy, M., and
Abrishamchi, A. 2013. Evaporation
Study of Saveh Dam Reservoir Using
Modified Energy Budget Method. Sharif
Civil Engin. J. 29: 115-127.
19.Hooshmand, A., Salari-jazi, M.,
Bahrami, M., Zahiri, J., and Soleimani,
S. 2013. Assessment of pan evaporation
changes in South Western Iran. Afric. J.
Agric. Res. 8: 16. 1449-1456.
20.Jamieson, B.G.M., Hodgson, A.N., and
Bernard, R.T.F. 1991. Phylogenetic
trends and variation in the ultrastructure
of the spermatozoa of sympatme species
of South African patellid limpets
(Archaeogastropoda, Mollusca) Invertebr.
Reprod. Dev. 20: 137-146.
21.Jensen, M.E. 2010. Estimating evaporation
from water surfaces. Proceedings of the
CSU/ARS Evapotranspiration Workshop,
Fort Collins. 1-27.
22.Jensen, M.E., Burman, R.D., and Allen,
R.G. 1990. Evapotranspiration and
Irrigation Water Requirements. ASCE
Manuals and Reports on Engineering
Practices. No. 70, Am. Soc. Civil
Engrs., New York, 360p.
23.Jensen, M.E., and Haise, H.R. 1963.
Estimating evapotranspiration from
solar radiation. J. Irrig. Drain. Engin.
Div. ASCE. 89: 15-41.
24.Kaboosi, K. 2011. Estimation of
Evaporation Pan Coefficient Based on
Pan Data and Comparison with
Empirical Equations, The National
Conference on agricultural meteorology
and water management. College of
agriculture and natural resources,
University of Tehran, Tehran, Iran.
25.Karbasi, M. 2016. Forecasting of daily
reference evapotranspiration at Ahvaz
synoptic station using wavelet-GMDH
hybrid model. J. Water Soil Cons.
23: 4. 323-330. (In Persian)
26.Kargar, A.A., and Sedghi, H. 2009.
Introduce and review of the most
common methods for prediction of
sedimentation in reservoirs (Case study:
Sefidrud dam). 14th National Civil
Engineering Students Conference, 25
August, Semnan University, Semnan,
Iran. (In Persian)
27.Khorasan Razavi Regional Water
Authority, Department of Conservation
and Utilization. 2005. A detailed
assessment of stability control of
double-arch concrete of Kardeh dam,
120p. (In Persian)
28.Majidi, M., Alizadeh, A., Farid, A., and
Vazifedoust, M. 2015. Estimating
Evaporation from Lakes and Reservoirs
under Limited Data Condition in a
Semi-Arid Region. J. Water Resour.
Manage. 29: 3711-3733.
29.Maroufi, S., Toranjeyan, A., and Zare
Abyaneh, H. 2009. Evaluation of
geostatistical methods for estimating
electrical conductivity and pH of stream
drained water in Hamedan-Bahar Plain.
J. Water Soil Cons. 16: 169-187.
(In Persian)
30.Mohammadrezapour, O., Amini Rakan,
A., and Karandish, F. 2016. Modeling of
monthly potential evapotranspiration
using genetic programming in Sistan
and Baluchestan province. J. Water Soil
Cons. 22: 5. 307-313. (In Persian)
31.Mousavi, S.F., and Mohammadzade
Habili, G. 2012. Simulation of sediment
distribution in Kosar dam reservoir
using the Dez dam reservoir
sedimentation pattern distribution. J.
Iran Water Res. 10: 209-213.
32.Nash, J.E., and Sutcliffe, J.V. 1970.
River flow forecasting through
conceptual models, Part 1. A discussion
of principles. J. Hydrol. 10: 282-290.
33.Osvaldo-Salazara, O., Wesströma, I.,
and Joela, A. 2008. Evaluation of
DRAINMOD using saturated hydraulic
conductivity estimated by a pedotransfer
function model. Agricultural Water
Management. 95: 1135-1143.
34.Papadakis, J. 1961. Climatic tables for
the world. Published by Author, Buenos
Aires. 175p.
35.Reca, J., García-Manzano, A.,
and Martínez, J. 2015. Optimal
pumping scheduling model considering
reservoir evaporation. Agricultural Water
Management. 148: 250-257.
36.Rezaee Pazhand, H. 2001. Application
of probability and statistics in water
resources. Sokhan Gastar publication,
456p. (In Persian)
37.Saadatkhah, N., Sarang, S.A., Tajrishi,
M., and Abrishamchi, A. 2002.
Evaluation of Chahnimeh Reservoirs
Evaporation. J. Water Wastewater.
40: 12-24.
38.Sentelhas, P., Gillespie, T., and Santos,
E.A. 2010. Evaluation of FAO PenmanMonteith and alternative methods for
estimating reference evapotranspiration
with missing data in southern Ontario,
Canada. Agricultural Water Management.
97: 635-644.
39.Shabani, M. 2010. Engineering
hydrology. Islamic Azad University of
Neyriz Publishing, 510p. (In Persian)
40.Poos, T., and Varju, E. 2017.
Dimensionless evaporation rate from
free water surface at tubular artificial
flow. Energy Procedia. 112: 366-373.
41.Singh, V.P., and Xu, C.Y. 1997.
Evaluation and generalization of 13
mass-transfer equations for determining
free water evaporation. Hydrological
Processes. 11: 311-323.
42.Stan, S., Neculau, G., Zaharia, L.,
Ioana-Toroimac, G., and Mihalache,
S. 2016. Study on the evaporation
and evapotranspiration measured on
the Căldăruşani Lake (Romania).
Environmental Sciences. 32: 281-289.
43.Statistics and information obtaining of
Khorasan Razavi regional water authority.
44.Stauffer, R.E. 1991. Testing lake energy
budget models under varying
atmospheric stability conditions. J.
Hydro. 128: 115-135.
45.Stephens, J.C., and Stewart, E.H.
1963. A comparison of procedures
for computing evaporation and
evapotranspiration. Publication 62,
international association of scientific
hydrology. International Union of
Geodynamics and Geophysics, Berkeley,
CA, Pp: 123-133.
46.Trajkovic, S., and Kolakovic, S.
2009. Evaluation of reference
evapotranspiration equations under
humid conditions. Water Resources
Management. 23: 3057-3067.
47.U.S. Soil Conservation Service. 1970.
Irrigation Water Requirements, U.S.
Department of Agriculture, Technical
Release No. 21.
48.Vahabi Mashhor, M., and Rahimi
Khoob, A. 2015. Comparison between
neural network and M5 model tree
for reconstructing missing evaporation
data of Khuzestan. J. Water Soil Cons.
22: 4. 187-202. (In Persian)
49.Willmott, C.J., Rykiel, C.M., and Mintz,
Y. 1985. Climatology of terrestrial
seasonal water circle. J. Climatol.
5: 589-606.
50.Xu, C.Y., and Singh, V.P. 2001.
Evaluation and Generalization of
Radiation-based Methods for Calculating
Evaporation. Hydrology Processes.
15: 305-319.
51.Yang, C.T. 1996. Sediment Transport:
Theory and Practice, Mc-Graw Hill,
Inc., New York, 412p.
52.Zuo, H., Chen, B., Wang, S., Guo, Y.,
Zuo, B., and Wu, L. 2016. Observational
study on complementary relationship
between pan evaporation and actual
evapotranspiration and its variation with
pan type. Agricultural and Forest
Meteorology. 222: 1-9.