پیش بینی اثرات اقدامات اصلاحی بر خصوصیات رواناب سطحی و میزان فرسایش خاک در آبخیز بنکوه حوضه رودخانه حبله رود

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

چکیده
سابقه و هدف: هدر رفت منابع آب‌وخاک از پیامدهای بهره‌برداری نامتعادل از منابع تولید است. مدیریت بهینه اراضی باعث بهره‌برداری پایدار از منابع آب‌وخاک و کاهش تخریب این منابع می‌شود. هدف این تحقیق ارائه گزینه‌های مدیریتی مبتنی بر پوشش گیاهی و پیش‌بینی اثرات آن‌ها بر خصوصیات رواناب سطحی و فرسایش خاک در حوزه آبخیز بنکوه (حدود 3300 کیلومترمربع) با استفاده از مدل‌سازی است. بدین ترتیب برنامه‌ریزان و مدیران آبخیز می‌توانند با کمک این پیش‌بینی‌ها، تصمیمات مناسبی برای حل مشکلات این حوضه اتخاذ نمایند.

مواد و روش‌ها: در این تحقیق با توجه به نوع و گسترش مشکلات در منطقه موردمطالعه و تعیین اهمیت نسبی آن‌ها، یازده فعالیت مدیریتی شامل قرق، درختکاری، علوفه کاری، رایپرین، تراسبندی، اگروفارستری، احداث باغ، پیتینگ، کنتورفارو، بذرپاشی و کپه‌کاری برای برطرف نمودن مشکلات حوضه انتخاب شدند. به‌منظور برآورد خصوصیات رواناب سطحی (ارتفاع رواناب، فسفر و نیترات) و مقدار فرسایش خاک در شرایط موجود به ترتیب از مدل L-THIA و معادله تجدیدنظر شده جهانی هدر رفت خاک (RUSLE) در چارچوب سیستم اطلاعات جغرافیایی استفاده شد. فاکتورهای RUSLE شامل R، K، LS، C و P می‌باشند که به ترتیب از داده‌های بارندگی، نقشه خاک منطقه، مدل رقومی ارتفاع و تکنیک سنجش‌ازدور محاسبه ‌شده‌اند. به‌منظور پیش‌بینی اثر هر یک از اقدامات اصلاحی پیشنهادی بر میزان فرسایش خاک، برآورد ارزش عددی فاکتورهای P و C درروشRUSLE با توجه به جداول استاندارد موجود در متون علمی مربوط و بر مبنای قضاوت خبرگان انجام شد. برای ارزیابی کارایی روش‌های مورداستفاده، از معیارهای آماری RMSE و MAE استفاده شد. پس از ارزیابی کارایی مدل، از مدل‌ها برای پیش‌بینی اثرات احتمالی اقدامات اصلاحی بر خصوصیات رواناب سطحی و فرسایش خاک استفاده شد.

یافته‌ها: مقادیر متوسط فاکتورهای R، K،LS وC به ترتیب 85/1(MJmmha-1h-1y-1)، 29/0(t ha h ha-1 MJ-1 mm-1)، 82/10 و 86/0 برای شرایط فعلی بودند. نقشه فرسایش خاک‌نشان می‌دهد که میزان فرسایش خاک در سطح حوضه، از مقدار ناچیز تا 49/33 تن در هکتار در سال متغیر است و 12/11 درصد از کل منطقه در طبقه فرسایشی زیاد و خیلی زیاد قرار دارد. میزان ارتفاع رواناب سالانه حوضه از 12/1 تا 27/9 سانتی‌متر متغیر است و میانگین ارتفاع رواناب سالانه حوضه 74/6 سانتی‌متر برآورد شده است. تجزیه‌وتحلیل نتایج نشان می‌دهد که اقدامات اصلاحی قرق و کپه‌کاری با توجه به کلیه شاخص‌ها (ارتفاع رواناب، فسفر، نیترات و فرسایش خاک) بیشترین اثر را خواهند داشت؛ اما بر اساس واحد سطح اقدامات اصلاحی، علوفه کاری، درخت‌کاری و احداث باغ به ترتیب بیشترین اثر را بر شاخص‌ ارتفاع رواناب خواهند داشت. علاوه بر این، ازنظر شاخص‌های‌ فرسایش خاک و فسفر اقدامات احداث باغ، درخت‌کاری و علوفه کاری به ترتیب بهترین عملکرد را ارائه خواهند کرد. ازنظر شاخص نیترات، اقدامات احداث باغ، درخت‌کاری و رایپرین به ترتیب حداکثر اختلاف را با مقادیر این شاخص‌ در وضعیت فعلی حوضه نشان خواهند داد. اجرای هم‌زمان تمامی فعالیت‌های مدیریتی باعث کاهش حدود 20/13 درصدی ارتفاع رواناب و 30/8 درصدی فرسایش حوضه خواهد شد.

نتیجه‌گیری: با در نظر گرفتن شرایط توپوگرافی و مورفولوژیکی حوزه آبخیز بنکوه و همچنین فاکتورهای فرسایش طبیعی و انسانی حوضه، به‌منظور جلوگیری از هدر رفت منابع خاک و آب باید به مناطق بحرانی توجه ویژه‌ای شود. با توجه به مشکلات آبخیز بنکوه در زمینه منابع آب‌وخاک، اجرای اقدامات اصلاحی مناسب برای حل مشکلات حوضه ضروری است. با توجه به وسعت زیاد مناطق مستعد برای اجرای فعالیت‌های قرق و کپه کاری در حوضه، این اقدامات بیشترین تأثیر را در بهبود خصوصیات رواناب سطحی و فرسایش خاک‌دارند. به‌منظور تصمیم‌گیری بهتر در انتخاب اقدامات اصلاحی توجه به سایر اثرات حاصل از اجرای اقدامات در مقیاس حوضه بنکوه از جنبه‌های اقتصادی، اجتماعی و اکولوژیکی پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting the impacts of management activities on surface runoff characteristics and soil erosion in the Bonekooh Watershed – Hablehroud River_Iran

نویسندگان [English]

  • Ehsan Alvandi
  • Vahedberdi sheikh
چکیده [English]

Unbalanced exploitation of natural resources in Iran has led to the loss of soil and water resources. Optimal land management leads to sustainable exploitation of water and soil resources and hence reduces the depletion of these resources. The aim of this research is to develop a list of vegetation-based management activities and to predict the impacts of the activities on surface runoff characteristics and soil erosion in the Bonekooh Watershed (about 3300km2) using a modeling exercise. The predictions can assist watershed planners and managers to make appropriate decisions solving the problems in the watershed.
In this research, considering the type and extent of the environmental problems in the study area and determining their relative importance, 11 management activities were chosen to solve the watershed problems. The L-THIA model and the Global Soil Loss Equation(RUSLE) model within the framework of the GIS were used to estimate the surface runoff characteristics (runoff, phosphorus and nitrate) and the amount of soil erosion, respectively. The RUSLE factors include R, K, LS, C, and P, which are calculated from rainfall data, regional soil maps, digital elevation models, and remote sensing techniques, respectively. The values of P and C factors in the RUSLE were estimated according to the standard tables provided in the relevant literature and based on expert judgment. Statistical criteria of RMSE and MAE were used to evaluate the efficiency of the models for the current status of the watershed. Subsequent to model evaluation, the models were used to predict the possible impacts of various management activities on surface runoff characteristics and soil erosion.
The average values of R, K, LS and C factors for the current status were 1.85 (MJ mm ha-1h-1y-1), 0.29 (t ha h ha-1 MJ-1 mm-1), 10.82, and 0.86, respectively. Soil erosion map shows that the amount of soil erosion changes from a insignificant value to 33.49 (tons per hectare per year) in the region. Also, 11.12 percent of the total area is located in the high and very high erosion classes. Annual runoff varies from 1.12 to 9.27 cm with an average of 6.74 cm. The analysis indicates that rangeland exclusion and pile seeding management activities in the watershed will have the most impact considering all indices (surface runoff, soil erosion, Phosphorus, Nitrate). But per unit of management activities, forage cultivation, afforestation, and orchard development have the most impact on runoff depth index, respectively. Additionally, considering both soil erosion and phosphorus indices, orchard development, afforestation, and forage cultivation activities will have the best performance, respectively. In addition, in terms of nitrate index, orchard development, afforestation and riparian activities will present maximum differences with the index value for the current status of the watershed. Implementing of all management activities will result a decrease of runoff depth by about 13.20% and a reduction of soil erosion by 8.30% in the watershed.
Given the topographic and morphologic conditions of the Bonekooh watershed, and also natural and human-made erosion factors for the watershed, critical areas should be considered in order to prevent the loss of soil and water resources. Because of existing water and soil resources problems in the Bonekooh Watershed, it is required to implement appropriate management activities to fix the problem. Due to the vast extent of areas being suitable for implementing rangeland exclusion and pile seeding activities in the watershed, these activities have the greatest impact on improvement of surface runoff characteristics and soil erosion. To make an improved decision in choosing the best management activities, it is suggested to consider other impacts arising from implementing the activities at the watershed scale from economic, social and ecological point of views.

کلیدواژه‌ها [English]

  • Soil erosion
  • Runoff
  • Management activities
  • the Hablehroud River
1.Ahiablame, L., Engel, B.A., and Chaubey,
I. 2012. Representation and evaluation of
low impact development practices with LTHIA-LID: an example for site planning.
Environ. Poll. 1: 2. 34-45.
2.Akbarifard, S., Qaderi, K., and
Aliannejad, M. 2017. Parameter
estimation of the nonlinear Muskingum
flood-routing model using water cycle
algorithm, J. Water. Manage. Res.
8: 16. 33-43.
3.Arekhi, S., and Niazi, Y. 2010.
Investigating application of GIS and RS
to estimate soil erosion and sediment
yield using RUSLE (Case study: Upper
part of Ilam Dam Watershed, Iran), J.
Water Soil Cons. 17: 2. 1-28. (In Persian)
4.Bagarello, V., Di Stefano, C., Ferro, V.,
Giordano, M., and Pampalone, V. 2012.
Estimating the USLE soil erodibility
factor in Sicily, south Italy. Appl. Eng.
Agric. 28: 2. 199-206.
5.Bahremand, A., Smedt, F., Corluy, J.,
Liu, Y.B., Poorova, J., Velcicka, L., and
Kunikova, E. 2006. Application of
WetSpa model for assessing land use
impacts on floods in the MargecanyHornasd Watershed. Slovaia. J. Water
Sci. Technol. 53: 10. 37-45.
6.Bai, M., Sadoddin, A., and Salman
Mahini, A.R. 2014. Prediction of the
effects of implementing ecological
management scenarios on landscape
structure for Chehel - Chai Watershed in
Golestan province of Iran. J. Geograph.
Space. 13: 44. 19-46. (In Persian)
7.Binh, Ph.D., Wu, Ch., and Hsieh, Sh.
2010. Land use change effects on
discharge and sediment yield of Song
Cau Catchment in northern Vietnam. J.
Environ. Sci. Engin. 5: 1. 92-101.
8.Bonilla, C., José, A., Reyes, L., and Magri,
A. 2010. Water erosion prediction using
the revised universal soil loss equation
(RUSLE) in a GIS framework, central
Chile. J. Agric. Res. 70: 1. 159-169.
9.Fallah Suraki, M., Kavian, A., and
Omidvar, E. 2015. Zoning of soil erosion
hazard in the Haraz Watershed by using
model RUSLE2. National Conference on
Climate Change and Engineering
Sustainable Agriculture and Natural
Resources, Tehran- September 17.
10.Farhan, Y., Dalal, Z., and Farhan, I.
2013. Spatial estimation of soil erosion
risk using RUSLE approach, RS and
GIS techniques: A case study of the
Kufranja Watershed, northern Jordan. J.
Water Resour. Prot. 5: 12. 1247-1261.
11.Ganasri, B., and Ramesh, H. 2015.
Assessment of soil erosion by RUSLE
model using remote sensing and GIS - A
case study of Nethravathi Basin.
Geoscience Frontiers. Pp: 1-9.
12.Habibi, H., Amir Safari, A., and Karam,
A. 2016. Determining of the amount of
sediment yield Marl lands in watershed in
rainfall simulator scale. J. Water. Engin.
Manage. 8: 3. 275-289. (In Persian)
13.Haregeweyn, N., Poesen, J., Verstraeten,
G., Govers, G., de Vente, J., Nyssen, J.,
Deckers, J., and Moeyersons, J. 2012.
Assessing the performance of a spatially
distributed soil erosion and sediment
delivery model (WATEM/SEDEM) in
Northern Ethiopia. Land Degrad. Dev.
24: 2. 188-204.
14.Jafarian, Z., Beshtar, V., and Kavian, A.
2017. Simulation effects of improvement
and restoration operations of rangeland
on soil loss using RUSLE model,
Physical Geography research quarterly.
49: 1. 55-69. (In Persian)
15.Kamaludin, K., Lihan, T., Ali Rahman,
Z., Mustapha, M., Idris, W., and Rahim,
S. 2013. Integration of remote sensing,
RUSLE and GIS to model potential soil
loss and sediment yield (SY). Hydrol.
Earth System Sci. 10: 4567-4596.
16.Karimi Sangchini, E., Ownegh, M.,
Sadoddin, A., Tahmasebi Pur, N., and
Rezaee, H. 2017. A system dynamics
model to predict the effects of
vegetation-based management scenarios
on structural landscape ecology in
Hablehrud River Basin, Watershed
Engineering and Management. 9: 1. 58-70.
(In Persian)
17.Keshtkar, A.R., Salajegheh, A.,
Sadoddin, A., and Allan, M.G. 2013.
Application of Bayesian networks for
sustainability assessment in catchment
modeling and management, case
study: the Hablehrood river catchment.
Ecological Modeling. 268: 48-54.
18.Lamba, J., Thompson, A., Karthikeyan,
K.G., Panuska, J., and Good, L.
2016. Effect of best management
practice implementation on sediment
and phosphorus load reductions at
subwatershed and watershed scale using
SWAT model, Inter. J. Sed. Res.
31: 386-394.
19.Li, N., Xu, Y., and Guo, H.C. 2007.
Analysis of Long-Term Impact of
urbanization on surface runoff in
Xitiaoxi river basin. Environmental
Informatics Archives. 5: 346-353.
20.Lim, K.J., Choi, J., Kim, K., Sagong,
M., and Engel, B.A. 2003. Development
of sediment assessment tool for effective
erosion control (SATEEC) in small
scale watershed. Transactions of the
Korean Society of Agricultural Engineers.
45: 5. 85-96.
21.Liu, Y., Ahiablame, L., Bralts, V., and
Engel, B. 2015. Enhancing a rainfallrunoff model to assess the impacts of
BMPs and LID practices on storm
runoff, J. Environ. Manage. 147: 12-23.
22.Liu, Y., Bralts, V.F., and Engel, B.A.
2015. Evaluating the effectiveness of
management practices on hydrology and
water quality at watershed scale with a
rainfall-runoff model. Science of the
Total Environment. 511: 298-308.
23.Moghaddam, M.R. 2011. Range and
range management, Tehran University
Press, 470p. (In Persian)
24.Mohammadi, M., Fallah, M., Kavian,
K., Gholami, L., and Omidvar, E. 2017.
The application of RUSLE Model in
spatial distribution determination of soil
loss Hazard. J. Ecohydrol. 3: 4. 645-658.
(In Persian)
25.Moore, I.D., and Wilson, J.P. 1992.
Length slope factor for the Revised
Universal Soil Loss equation: simplified
method of solution. J. Soil Wat. Corner.
47: 5. 423-428.
26.Mtibaa, S., Hotta, N., and Irie, M.
2018. Analysis of the efficacy and costeffectiveness of best management
practices for controlling sediment yield:
A case study of the Joumine watershed,
Tunisia, Science of the Total Environment.
617: 1-16.
27.Mwangi, J.K., Shisanya, C.A.,
Gathenya, J.M., Namirembe, S., and
Moriasi, S. 2015. A modeling approach
to evaluate the impact of conservation
practices on water and sediment yield in
Sasumua Watershed, Kenya. Soil and
Water Conservation. 70: 2. 75-90.
28.Nkwunonwo, U.C., Whitworth, M., and
Baily, B. 2015. A Review and critical
analysis of the efforts towards urban
flood reduction in the lagos region of
Nigeria, Nat., Hazards Earth Syst., Sci.
Discuss. Pp: 3897-3923.
29.Noori, Z., Salajegheh, A., Malekian,
A., and Moghadamnia, A. 2018.
Investigating the effects of best
management practices on the reduction
of point and non-point source pollution
of water using SWAT model (Case
Study: Seimareh River). Iran. J. Soil
Water Res. 48: 5. 995-1006. (In Persian)
30.Pandey, A., Chowdary, V., and Mal, B.
2007. Identification of critical erosion
prone areas in the small agricultural
watershed using USLE, GIS and remote
sensing. Water Resources Management.
21: 4. 742-746.
31.Perry, P., and Nawaz, R. 2008. An
investigation into the extent and impacts
of hard surfacing of domestic gardens in
an area of Leeds, United kingdom.
Landscape and Urban Planning. 86: 1-13.
32.Renard, K.G., and Freimund, J.R. 1994.
Using monthly precipitation data to
estimate the R factor in the revised
USLE. J. Hydrol. 157: 287-306.
33.Sadeghi, S.H.R., and Saeidi, P. 2010.
Reliability of sediment rating curves for
a deciduous forest watershed in Iran. J.
Hydrol. Sci. 55: 5. 821-831.
34.Sadeghi, S.H.R., Moatamednia, M., and
Behzadfar, M. 2011. Spatial and
temporal variations in the Rainfall
Erosivity Factor for Iran. J. Agr. Sci.
Tech. 13: 451-464.
35.Sadoddin, A., Letcher, R.A., Jakeman,
A.J., Croke, B.W., and Newham, L.T. H.
2011. A Bayesian model decision
support system for salinity management.
First International Conference of
Sustainable Watershed Management
(SuWaMa), Istanbul, Turkey.
36.Sadoddin, A., Shahabi, M., and Bai, M.
2017. Integrated watershed assessment
and management Principles and
approaches for modeling and decision
making. Gorgan University of
Agricultural Sciences and Natural
Resources Publishing. 170p. (In Persian)
37.Sekara, W.G., Gupta, N.A., Valeo, C.,
Hasbani, J.G., Qiao, Y., Delaney, P. and
Marceau, D.J. 2012. Assessing the
impact of future land-use changes on
hydrological processes in the Elbow
River watershed in southern Alberta,
Canada. J. Hydrol. 4: 41. 220-232.
38.SheshukovKyle, A., Douglas-Mankin, K.,
Sinnathamby, S., and Daggupati, P. 2016.
Pasture BMP effectiveness using an
HRU-based subarea approach in SWAT,
J. Environ. Manage. 166: 276-284.
39.Solaimani, K., Modallaldoust, S., and
Lotfi, S. 2009. Investigation of land use
changes on soil erosion process using
geographical information system. Inter.
J. Environ. Sci. Technol. 6: 3. 415-424.
40.Tang, Z., Engel, B.A., Pijanowski, B.C.,
and Lim, K.J. 2005. Forecasting land
use change and its environmental impact
at a watershed scale. Environmental
impact at a watershed scale. J. Environ.
Manage. 76: 45-35.
41.Teh, S.H. 2011. Soil erosion modeling
using RUSLE and GIS on CAMERON
HIGHLANDS, MALAYSIA for
hydropower development, A 30 ECTS
credit units Master´s thesis, Pp: 1-71.
42.Turner, B.L., Moss, R.H., and SKole,
D.L. 1993. Relating land use and global
Land-cover change: A proposal for an
IGBP- HDP core project global change
report, Stokholm, Sweden. Pp: 221-223.
43.Van der Knijff, J.M., Jones, R.J.A., and
Montanarella, L. 2000. Soil erosion risk
assessment in Europe, EUR19044 EN.
Office for Official Publications of the
European Communities, Luxembourg,
34p.
44.Vipul Shinde, K., Tiwari, S., and
Manjushree, S. 2010. Prioritization of
micro watersheds on the basis of soil
erosion hazard using remote sensing and
geographic information system. J. Water
Resour. Environ. Engin. 2: 3. 130-136.
45.Wang, G., Gertner, G., Fang, S., and
Anderson, A.B. 2003. Mapping multiple
variables for predicting soil loss by
geostatistical methods with TM images
and a slope map. Photogrammetric
Engineering and Remote Sensing.
69: 8. 889-898.
46.Yang, L., Ma, K., Guo, Q., and Bai, X.
2008. Evaluating long-term hydrological
impacts of regional urbanisation in
Hanyang, China, using a GIS model and
remote sensing. J. Sust. Dev. World
Ecol. 15: 350-356.