پتانسیل گیاه پالایی ذرت تحت تأثیر بیوچارهای برگ‌ گردو در یک خاک آلوده

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار گروه خاک دانشگاه شهرکرد

2 علوم خاک دانشکده کشاورزی شهرکرد

3 دانشگاه شهرکرد

چکیده

سابقه و هدف: امروزه نیاز به توسعه روش‌های زیستی اصلاح خاک، که از لحاظ هزینه مقرون به صرفه باشند و بدون کاهش حاصلخیزی خاک آلودگی‌ها را از بین ببرند، وجود دارد. بدین‌منظور پژوهش‌هایی در زمینه کاهش تحرک و فراهمی‌زیستی فلزات سنگین انجام شده‌است. اخیراً، بیوچار به صورت گسترده‌ای جهت کاهش سمیت فلزات سنگین استفاده می‌شود. بیوچار، ماده آلی غنی از کربن است که از گرماکافت بقایا، در شرایطی با اکسیژن محدود تهیه می‌شود و از هیدروکربن‌های آروماتیک چندحلقه‌ای شکل گرفته است که در آن اتم‌های کربن به شکل حلقوی در ارتباط با هم هستند. وجود ساختار آروماتیک موجب پایداری آن در برابر تغییرات بیولوژیکی و شیمیایی می‌شود. این ماده کربنی، دارای گروه‌های عامل فراوانی چون هیدروکسیل، کتون، استر، آلدهید، آمین و کربوکسیل و دارای مقادیر قابل‌توجهی از اسیدهای آلی هیومیک و فولویک است که ترکیب و سطح ناهمگن آن‌ها می‌تواند ویژگی‌های آبدوستی و یا آبگریزی متفاوتی را از خود بروز دهد و خصوصیات بازی و اسیدی داشته باشد. بنابراین توانایی ترکیب با موادآلی و غیرآلی را دارد. همچنین این ماده با داشتن سطح ویژه، ساختار متخلخل، pH و CEC بالا، می-تواند خطر آلودگی فلزات سنگین را در زنجیره غذایی کاهش می‌دهد. هدف از انجام این مطالعه، بررسی کاربرد برگ‌گردو و بیوچارهای تهیه شده از آن در دماهای 200، 400 و 600 درجه سلسیوس بر قابلیت‌دسترسی و جذب سرب به‌وسیله ذرت (رقم سینگل‌کراس 704) بود.
مواد و روش‌ها: در این مطالعه، آزمایش گلدانی شامل سطوح 0، 5/0، 1 و 2 درصد برگ‌گردو و بیوچارهای تهیه شده از آن در دماهای 200 ،400 و 600 درجه سلسیوس با 3 کیلوگرم خاک در 3 تکرار مخلوط و به مدت 45 روز در شرایط گلخانه خوابانده شد. پس از خواباندن، در هر گلدان (پس از افزودن کودهای مورد نیاز) 3 بذر ذرت کشت و پس از 8 هفته اندام هوایی و ریشه ذرت برداشت شد، شاخص‌های ذرت (وزن خشک اندام هوایی، وزن خشک ریشه، غلظت سرب در اندام هوایی، غلظت سرب در ریشه، ضریب تجمع زیستی و ضریب انتقال) و غلظت سرب دردسترس (DTPA-TEA) خاک تعیین شد.
یافته‌ها: نتایج نشان داد که با افزایش دمای تهیه و مقدار کاربرد اصلاح‌کننده‌ها در خاک آهکی، سرب دردسترس و تجمع زیستی آن در گیاه ذرت کاهش یافت. تیمار خاک‌ها با 5/0، 1 و 2 درصد بیوچار تهیه شده در دمای 600 درجه سلسیوس، به طور معنی‌داری مقدار سرب در اندام هوایی را به‌ترتیب 3/31، 5/33 و 1/36 درصد و مقدار سرب در ریشه را به‌ترتیب 0/32، 6/35 و 2/36 درصد نسبت به شاهد کاهش داد (05/0>P). پاسخ‌های فیزیولوژیکی نشان داد که اصلاح‌کننده‌ها در رشد اندام هوایی نسبت به ریشه موثرتر بودند. تیمار خاک با 2 درصد بیوچار تهیه شده در دمای 600 درجه سلسیوس، وزن خشک اندام هوایی و ریشه را به‌ترتیب 4/131 و 7/116 درصد نسبت به شاهد افزایش معنی‌داری داد. همچنین نتایج نشان داد که با افزایش دمای تهیه و مقدار اصلاح‌کننده‌ها در خاک، سرب عصاره‌گیری شده با DTPA-TEA کاهش یافت. تیمار خاک‌ها با 5/0، 1 و 2 درصد بیوچار تهیه شده در دمای 600 درجه سلسیوس، سرب دردسترس را به‌ترتیب 3/35، 1/40 و 1/49 درصد کاهش داد (05/0>P). بنابراین بیوچارها قادر به کاهش آلودگی سرب در خاک و افزایش وزن خشک ذرت بودند.
نتیجه‌گیری: کاربرد بیوچار با کاهش مقدار سرب دردسترس، مقدار سرب در گیاه را کاهش و رشد ذرت را افزایش داد. بنابراین می‌توان از بیوچار برای تثبیت گیاهی سرب در خاک در گیاه پالایی استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Phytoremediation Potential of Maize (Zea mays L.) using Biochars Produced from Walnut Leaves in a Contaminated Soil

نویسندگان [English]

  • Hamid Reza Motaghian 1
  • Parvin Kabiri 2
  • Alireza Hosseinpur 3
2 Soil Science Agriculture faculty Shahrekord
3 shahrekord university
چکیده [English]

Introduction
TPTEs pollution can be hazardous to soil, plant, and human health through the soil-crop-food chain. Lead (Pb) is a toxic element commonly found in heavy-metal contaminated soils, and it has been one of the major global environmental concerns over the past few decades. It discharges to the soil environment through increased anthropogenic activities especially mining. This metal can have harmful and chronic-persistent health effects on exposed populations through food consumption grown on contaminated soils. It is needed to reduce bioavailability of metals in croplands. Biochar is an organic C rich material derived from pyrolysis of waste biomass under an oxygen-limited environment. It is used in soil to immobilize soil PTEs,
Materials and Methods
The aim of this study was to evaluate the feasibility of Walnut leaf (WL) and its derived biochars (WLB) produced at three pyrolysis temperatures of 200, 400 and 600 °C on lead (Pb) availability and its accumulation in a cultivar of maize (Zea mays L. Cv. Single cross 704) grown in a contaminated calcareous soil. An experiment was conducted with maize grown in untreated soil (control) and soil treated with three rates of WL and WLB applications. Dry amendments were mixed with a mass fraction of 0, 0.5, 1, and 2% (w/w). Plastic pots were filled with 3 kg of amended and unamended soil. Each treatment was performed in triplicate. The pots were incubated for the soil mixture to equilibrate over 45 days. After the incubation period, macro- and micro-nutrients were added to all treatments according to the soil test. In each pot, 3 seeds of maize were sown and plants were grown for 8 weeks. They were harvested and separated into roots and shoots. The dried shoots and roots were grounded and stored for further analysis (maize indices: shoots and roots dry weight, Pb concentration in shoots and roots, bioaccumulation factor and translocation factor). Soil samples from pots were analyzed too (DTPA-extractable and total Pb).
Results and Discussions
This study has demonstrated that the application of the amendments to the calcareous contaminated soil has the potential to reduce the phytoavailability (bioavailability, bioaccumulation factor) of Pb to maize. Influence of amendments on Pb availability and uptake varied depending on the pyrolysis temperature and application rate. Phytoavailability of Pb was most dramatically influenced by biochars addition. The 0.5, 1 and 2% (w/w) biochar prepared at 600 °C, significantly decreased Pb concentration in the shoot by 31.3, 33.5, and 36.1% respectively and in the root by 32.0, 35.6, and 36.2% respectively (p < 0.05). Amendments reduced Pb uptake in the shoot/root of maize too. Physiological responses showed that amendments application improved the shoot/root growth and dry biomass (root and shoot). In comparison with the control, the highest shoot and root dry matter values were determined in 2% (w/w) biochar-600 °C treatment by 131.4 and 116.7% respectively (p < 0.05). Correspondingly, the bioaccumulation factor of Pb also decreased with increasing amendments pyrolysis temperature and addition rate. Results indicated that the DTPA-TEA-extractable Pb was significantly (p < 0.05) reduced in soils treated with amendments. Bioavailable soil Pb concentrations (DTPA extraction) decreased by increasing amendments rate and pyrolysis temperature. The 0.5, 1 and 2% WLB produced at 600 °C, significantly decreased the DTPA-extractable Pb in comparison with the Control by 35.3, 40.1 and 49.1%, respectively. Therefore, these results indicated that amendments inhibited the uptake and transfer of Pb by maize plants.
Conclusions
This study clearly has shown that biochar has the potential of immobilizing Pb, reducing its availability to maize, and increasing plant growth. Thereby biochar can reduce lead exposure and increase its phytostabilization, associated with phytoremediation potential of maize.

کلیدواژه‌ها [English]

  • Walnut Leaf
  • lead bioavailability
  • Phytoremediation
  • Phytostabilization
1.Ahmad, M., Ok, Y.S., Kim, B.Y., Ahn, J.H., Lee, Y.H., Zhang, M., Moon, D.H., Al-Wabel, M.I., and Lee, S.S. 2016. Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J. Environ. Manage. 166: 131-139.
2.Al-Farraj, A.S., Al-Wabel, M.I., Al-Shahrani, T.S., El-Maghraby, S.E., and AlSewailem, M.A.S. 2010. Accumulation coefficient and translocation factor of heavy metals through Rhazya stricta grown in the mining area of Mahad AD'Dahab, Saudi Arabia. WIT Transactions on Ecology and the Environment. 140: 325-336.
3.Ali, A., Guo, D., Zhang, Y., Sun, X., Jiang, S., Guo, Z., Huang, H., Liang, W., Li, R., and Zhang, Z. 2017. Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Sci. Rep. 7. article number 2690.
4.Archanjo, B.S., Mendoza, M.E., Albu, M., Mitchell, D.R., Hagemann, N., Mayrhofer, C., Mai, T.L.A., Weng, Z., Kappler, A., Behrens, S., and Munroe, P. 2017. Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma. 294: 70-79.
5.Bade, R., Oh, S., and Shin, W.S. 2012. Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotox. Environ. Safe. 80: 299-307.
6.Bonanno, G. 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety. 74: 4. 1057-1064.
7.Bonanno, G., and Giudice, R.L. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 10: 639-645.
8.Brennan, A., Jiménez, E.M., Alburquerque, J.A., Knapp, C.W., and Switzer, C. 2014. Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environ. Pollut. 193: 79-87.
9.Brunauer, S., Emmett, P.H., and Teller, E. 1938. Adsorption of gases in multimolecular layers. ‎J. Am. Chem. Soc. 60: 2. 309-319.
10.Cheng, J., Li, Y., Gao, W., Chen, Y., Pan, W., Lee, X., and Tang, Y. 2018. Effects of biochar on Cd and Pb mobility and microbial community composition in a calcareous soil planted with tobacco. Biol. Fertil. Soils.
54: 3. 373-383.
11.Eid E.M., and Shaltout K.H. 2016. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dumpsite. Int. J. Phytoremediation. 18: 11. 1075-1085.
12.Eid, E.M., and Shaltout, K.H. 2014. Monthly variations of trace elements accumulation and distribution in
above-and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in LakeBurullus (Egypt): a biomonitoring application. Ecol. Eng. 73: 17-25.
13.Gee, G.W., and Bauder, J.W. 1986. Particle size analysis. P 475-490. In: Klute A. (ed.) Methods of Soil Analysis. Part l. 2nd edition. Agron. Monogr. 9. ASA and SSSA, Madison, Wisconsin.
14.Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V., and Deng, H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric. Ecosyst. Environ. 206: 46-59.
15.Hosseinpur, A., and Motaghian, H. 2018. Soil Testing (Correlation, Calibration, and Fertilizer Recommendation Studies), ShahrekordUniversity. 386p. (In Persian)
16.Hutzinger, O. 1980. The Handbook of Environmental Chemistry. Springer. New York. 434p.
17.Kabata-Pendias, A., and Pendias, H. 2001. Trace Elements in Soils and Plants. Third Ed. CRC Press. Boca Raton, London. 331p.
18.Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N.W., and Beesley, L. 2011. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 191: 1-3. 41-48.
19.Khalid, N., Hussain, M., Young, H.S., Ashraf, M., Hameed, M., and Ahmad, R. 2018. Lead concentrations in soils and some wild plant species along two busy roads in Pakistan. Bull Environ. Contam. Toxicol. 100: 2. 250-258.
20.Kim, H.S., Kim, K.R., Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G., and Kim, K.H. 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth. Sci. 74: 2. 1249-1259.
21.Krzesłowska, M. 2011. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta. Physiol. Plant. 33: 1. 35-51.
22.Kumar, A., Tsechansky, L., Lew, B., Raveh, E., Frenkel, O., and Graber, E.R. 2018. Biochar alleviates phytotoxicity in Ficus elastica grown in Zn-contaminated soil. Sci. Total. Environ. 618: 188-198.
23.Leoppert, R.H., and Suarez, D.L. I996. Carbonate and gypsum. P 437-447. In: Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
24.Li, H., Liu, Y., Chen, Y., Wang, S., Wang, M., Xie, T., and Wang, G. 2016. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Sci. Rep. 6. article number. 31616.
25.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil. Sci. Soc. Am. J. 42: 421-428.
26.Lone, M.I., He, Z.L., Stoffella, P.J., and Yang, X.E. 2008. Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J. Zhejiang. Univ. Sci. B. 9: 3. 210-220.
27.Lwin, C.S., Seo, B.H., Kim, H.U., Owens, G., and Kim, K.R. 2018. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality-a critical review. J. Soil. Sci. Plant. Nutr. 64: 2. 156-167.
28.Magaji, Y., Ajibade, G.A., Yilwa, V.M.Y., Appah, J., Haroun, A.A., Alhaji, I., Namadi, M.M., and Sodimu, A.I. 2018. Concentration of heavy metals in the soil and translocation with phytoremediation potential by plant species in military shooting range. World Scientific News. 92: 2. 260-271.
29.Małecka, A., Piechalak, A., Morkunas, I., and Tomaszewska, B. 2008. Accumulation of lead in root cells of Pisum sativum. Acta. Physiol. Plant. 30: 5. 629-637.
30.Marques, A.P., Oliveira, R.S., Rangel, A.O., and Castro, P.M. 2008. Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environ. Pollut. 151: 3. 608-620.
31.McCann, C.M., Gray, N.D., Tourney, J., Davenport, R.J., Wade, M., Finlay, N., Hudson-Edwards, K.A., and Johnson, K.L. 2015. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste. Chemosphere. 138: 211-217.
32.Nelson, D.W., and Sommers, L.E. 1996. Carbon, organic carbon and organic matter. P 961-1010. In Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
33.Nikolaidis, C., Zafiriadis, I., Mathioudakis, V., and Constantinidis, T. 2010. Heavy metal pollution associated with an abandoned lead–zinc mine in the Kirki Region, NEGreece. Bull Environ. Contam. Toxicol. 85: 307-312.
34.O'Connor, D., Peng, T., Zhang, J., Tsang, D.C., Alessi, D.S., Shen, Z., Bolan, N.S., and Hou, D. 2018. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of The Total Environment. 619: 815-826.
35.Ogundiran, M.B., Lawal, O.O., and Adejumo, S.A. 2015. Stabilisation of Pb in Pb smelting slag-contaminated soil by compost-modified biochars and their effects on maize plant growth. J. Environ Prot. 6: 8. 771-780.
36.Park, J.H., Choppala, G., Lee, S.J., Bolan, N., Chung, J.W., and Edraki, M. 2013. Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air, and Soil Pollution. 224: 12. 1711-1721.
37.Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W., and Chuasavathi, T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant. Soil. 348: 1-2. 439-451
38.Pelloux, J., Rusterucci, C., and Mellerowicz, E.J. 2007. New insights into pectin methylesterase structure and function. Trends. Plant. Sci. 12: 6. 267-277.
39.Qin, P., Wang, H., Yang, X., He, L., Müller, K., Shaheen, S.M., Xu, S., Rinklebe, J., Tsang, D.C., Ok, Y.S., and Bolan, N. 2018. Bamboo-and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere. 198: 450-459.
40. Rhoades J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. P 417-435. In: Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
41.Ruiz, E., Alonso-Azcárate, J., Rodríguez, L., and Rincón, J. 2009. Assessment of metal availability in soils from a Pb-Zn mine site of South-Central Spain. Soil Sediment Contam. 18: 5. 619-641.
42.Ryan, J.A., Scheckel, K.G., Berti, W.R., Brown, S.L., Casteel, S.W., Chaney, R.L., Hallfrisch, J., Doolan, M., Grevatt, P., Maddaloni, M., and Mosby, D. 2004. Peer reviewed: reducing children's risk from lead in soil. Environ. Sci. Technol. 38: 1. 18-24.
43.Sarwar, N., Imran, M., Shaheen, M.R., Ishaque, W., Kamran, M.A., Matloob, A., Rehim, A., and Hussain, S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 171: 710-721.
 44.Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., and Dumat, C. 2011. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol. Environ. Saf. 74: 1. 78-84.
45.Sposito, G., Lund, L.J., and chang, A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc. Am. J. 46: 260-265.
46.Sumner, M.E., and Miller, P.M. 1996. Cation exchange capacity and exchange coefficient. P 1201-1230. In Sparks D.L. (ed.) Methods of Soil Analysis. SSSA. Madison.
47.Susarla, S., Medina, V.F., and McCutcheon, S.C. 2002. Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng.18: 5. 647-658.
48.Taskila, S., Tuomola, M., and Ojamo, H. 2012. Enrichment cultivation in detection of food-borne Salmonella. Food Control. 26: 2. 369-377.
49.Thomas, G.W. 1996. Soil pH and soil acidity. In: Sparks D.L. (ed.). Methods of Soil Analysis. SSSA, Madison. 1309p.
50.Udeigwe, T.K., Eze, P.N., Teboh, J.M., and Stietiya, M.H. 2011. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Environ. Int. 37: 1. 258-267.
51.Verbruggen, N., Hermans, C., and Schat, H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181: 4. 759-776.
52.Verkleij, J.A.C., and Schat, H. 1990. Mechanisms of metal tolerance in higher plants (Vol. 95). CRC Press, Boca Raton, FL.
53.Weis, J.S., Glover, T., and Weis, P. 2004. Interactions of metals affect their distribution in tissues of Phragmites australis. Environ. Pollut. 131: 3. 409-415.
54. Yathavakulasingam, T., Mikunthan, T., and Vithanage, M. 2016. Acceleration of Lead Phytostabilization by Maize (Zea mays) in Association with Gliricidiasepium Biomass. Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka. 2: 5. 16-21.