بررسی اثر سطوح مختلف شوری بر عملکرد و اجزای عملکرد گیاه کینوا (رقم Titicaca)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه مهندسی آب، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار گروه مهندسی آب، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

سابقه و هدف:
از آنجایی‌که یکی از اهداف مهم در کشاورزی پایدار با توجه به بحران منابع آبی، افزایش بهره‌وری مصرف آب می‌باشد لذا استفاده از تکنیک‌هایی جهت رسیدن به این مهم ضروری است. با توجه به کمبود آب‌های با کیفیت، بیش از پیش استفاده از آب‌های نامتعارف (آب دریا) مورد توجه است. یکی از تکنیک‌های استفاده از آب‌های شور (آب دریا) در آبیاری، اختلاط با آب معمولی می‌باشد. هدف از انجام این پژوهش نیز بررسی اثر سطوح متفاوت شوری بر عملکرد و اجزای عملکرد گیاه کینوا (Capsicum annum L) رقم Titicaca تحت شرایط گلخانه‌ای بود.
مواد و روش‌ها:
در این تحقیق از 5 سطح اختلاط آب دریا و آب شهری، جهت بررسی اثر آن بر روی عملکرد و اجزای عملکرد گیاه کینوا استفاده شد. این تحقیق بر پایه طرح کاملاً تصادفی و با 3 تکرار در سال 95 در دانشگاه علوم کشاورزی و منابع طبیعی گرگان در شرایط گلخانه‌ای و در گلدان اجرا گردید. گلخانه مورد استفاده در شمال کشور ایران و در شهر گرگان با موقعیت جغرافیایی 36 درجه و 51 دقیقه طول شمالی و 54 درجه و 16 دقیقه عرض شرقی و ارتفاع 3/13 متر از سطح دریا واقع بود. بافت خاک مورد استفاده در این طرح سیلتی رسی بود. سطوح مختلف شوری مورد بررسی در این تحقیق شامل (صفر، 15، 30، 45 و 60 درصد اختلاط آب دریا و آب شهری) بود. دانه‌های گیاه کینوا در این تحقیق در عمق 5/2 سانتی‌متری کاشته شد و نیاز آبی گیاه نیز بر اساس تبخیر از سطح تشت کلاس A اندازه‌گیری شد. پس از گذشت 6 ماه گیاهان برداشت شده و وزن خشک ریشه و بوته، وزن هزار دانه، عملکرد و ارتفاع بوته جمع‌آوری گردید. قبل از شروع ازمایش خواص شیمیایی و فیزیکی آب و خاک مورد استفاده در آزمایشگاه مورد بررسی قرار گرفت. در انتها تحلیل آماری صفات مورد بررسی با استفاده از نرم‌افزار SAS (ver 9.0) انجام گرفت. مقایسه میانگین‌ها نیز با استفاده از آزمون LSD در سطح 5 درصد انجام شد.
یافته‌ها:
نتایج نشان داد که شوری بر وزن خشک اندام هوایی، ارتفاع بوته، عملکرد و وزن هزار دانه در سطح احتمال یک درصد معنی‌دار بوده، ولی بر وزن خک ریشه در سطح 5 درصد معنی‌دار بود. در این تحقیق نتایج نشان دهنده اثر منفی شوری بر روی کلیه صفات مورد بررسی بود. نتایج نشان داد که تیمار 15 درصد اختلاط آب دریا و آب شهری در مقایسه با سایر رژیم‌های مورد بررسی پس از تیمار شاهد دارای بیشترین میزان وزن خشک ریشه و بوته، وزن هزار دانه و عملکرد در واحد سطح بوده ولی در صفت ارتفاع بوته بیشترین مقدار در تیمار 15 درصد اختلاط آب دریا و آب شهری مشاهده شد.
نتیجه‌گیری:
نتایج نشان داد که افزایش شوری از صفر به 15 درصد اختلاط آب دریا بترتیب وزن خشک اندام هوایی، وزن خشک ریشه، عملکرد و وزن هزار دانه را به میزان 8/9، 9/9، 1/2 و 4/23 درصد کاهش داد. همچنین نتایج نشان داد که روش اختلاطی، تا حد زیادی اثرات منفی ناشی از استفاده آب‌های شور به‌صورت خالص را کاهش داد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation the effect of different Salinity levels on Yield and Yield components of Quinoa (Cv. Titicaca)

نویسندگان [English]

  • saber jamali 1
  • hossein sharifan 2

1 Water Engineering Department, ferdowsi university of mashhad, mashhad, Iran.

2 Associate Professor, Department of water engineering, Faculty of Agricultural, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

Background and Objectives: Since the agriculture field is the main water consumer, using the approaches to increase water use efficiency is necessary. Due to the limited freshwater, farmers have to use exotic water, such as seawater. One of the management methods is the mixture use of freshwater and seawater. The goal of this study was to investigate the effect of different salinity levels on yield and yield components of Quinoa (Cv. Titicaca) in greenhouse condition.
Materials and Methods: In this study, the effect of five mixing use of seawater and freshwater evaluated on yield and yield components of Quinoa (CV. Titicaca). The research was done based on completely randomized design including 3 replications as pot planting in Gorgan University of Agricultural Sciences and Natural Resources during 2016. Research Station is located in north of Iran at 36° 51' N latitude and 54° 16' E longitude at the south-east corner of Caspian Sea and its height from sea level is 13.3 meters. Soil texture is silty clay. In this study, five irrigation regimes included (0, 15, 30, 45 and 60 percent mixture of sea and tap water). The seeds of Quinoa were planted at a depth of 2.5 centimeter in soil of each pot and were irrigated with tap water. Plants harvested after 6 months, shoot and root dry weight, plant height, yield and thousand kernel weights were measured. Physical and chemical properties of irrigation water and of soil were determined before experiment. The obtained data analyzed using statistical software of SAS (Ver. 9.0) and the means were compared using LSD test at 5 % percent levels.
Results: The results showed that effect of different salinity levels on shoot dry weight, plant height, yield and thousand kernel weights was significant at 1 percent level (P<0.01), but on root dry weight was significant at 5 percent level (P<0.05). In this study, all of these parameters decreased significantly with increasing water salinity. The result showed that the irrigation regime of 15 percent mixture of seawater and tap water compared to other regimes had the highest root and shoot dry weights, yield, and thousand kernel weights after control treatment. While, the 15 percent mixture of seawater and tap water irrigation regime had the highest plant height.
Conclusion: The results indicated that increasing of salinity levels from 0 to 15 percent mixture of sea and tap water resulted in redaction of shoot and root dry weight, yield and thousand kernel weights to 9.8, 9.9, 2.2 and 23.4 percent, respectively. The results showed that this kind of saline and fresh water mixture, in any way, has a high efficiency in reducing salt stress on plant.

کلیدواژه‌ها [English]

  • Quinoa
  • Seawater
  • shoot and root dry weight
  • thousand kernel weights
  • Yield
1.Abedi, M.J., Nairizi, S., Ebrahimi Birang, N., Maherani, M., Khaledi, H., Mehrdadi, N., and
Cheraghi, A.M. 2002. Saline Water Utilization in Sustainable Agriculture. Iranian National
Committee on Irrigation and Drainage. 224p. (In Persian)
2.Abid, M., Qayyum, A., Dastai, A.A., and Abdul Wajid, R. 2001. Effect of Salinity and SAR
of Irrigation water on yield, Physiological growth parameters of Maiz (Zea mayes L.) and
Preperties of the soil. J. Res. (Science), Bahaudin Zakariya University, Multan Pakistan.
12: 1. 26-330.
3.Adolf, V.I., Shabala, S., Andersen, M.N., Razzaghi, F., and Jacobsen, S.E. 2012. Varietal
differences of quinoa’s tolerance to saline conditions. Plant and Soil, 357: 1-2. 117-129.
4.Algosaibi, A.M., El-Garawany, M.M., Badran, A.E., and Almadini, A.M. 2015. Effect of
Irrigation Water Salinity on the Growth of Quinoa Plant Seedlings. J. Agric. Sci. 7: 8. 205.
5.Alizadeh, A. 2014. Soil, Water and Plant Relationship. Sajad university of technology. 876p.
(In Persian)
6.Allen, L.H.Jr. 1991. Effect of increasing carbon dioxide levels and climate change on plant
growth, evaportanspiration and water resources in the West Under Conditions of Climatic
Uncertainty. 14-16 Nov. 1990., Scottsdale, AZ. National Research Council, National
Academy Press, Washington DC. Pp: 101-147.
7.Ashraf, M. 2001. Relation between growth and gas exchange characteristics in some
salttolerance amphidiploid Brassica species in relation to their diploid parents.
Environmental and Experimental Botany. 45: 155-163.
8.Bilalis, D., Kakabouki, I., Karkanis, A., Travlos, I., Triantafyllidis, V., and Dimitra, H.E.L.A.
2012. Seed and saponin production of organic quinoa (Chenopodium quinoa Willd.)
for different tillage and fertilization. Notulae Botanicae Horti Agrobotanici Cluj-Napoca.
40: 1. 42.
9.Blokhina O., Virolainen E., and Fagestedt. K.V. 2003. antioxidants, oxidative damage and
oxygen deprivation stress: A review. Annuals of Botany, 91: 179-194.
10.Blum, A. 1988. Plant breeding for stress environments. CRC Press Inc., Boca Raton, Florida,
USA. 233p.
11.Daneshvar, H.A., and Kiani, B. 2005. Effect of Salinity on some local cultivars of Russian
olive (Elaeagnus angustifolia) in Isfahan province. 65: 76-83. (In Persian)
12.Davazdahemami, S., Sefidkon, F., Jahansooz, M.R., and Mazaheri, D. 2010. Evaluation of
water salinity effects on yield and essential oil content and composition of Carum copticum
L. Iran. J. Med. Arom. Plant. 25: 4. 504-512. (In Persian)
13.Dixit, A.A., Azar, K.M., Gardner, C.D. et al. 2011. Incorporation of whole, ancient grains
into a modern Asian Indian diet to reduce the burden of chronic disease. Nutr Rev. Aug.
69: 8. 479-88.
14.Francois, L.E., Grieve, E.V., Mass, E.V., and Leseh, S.M. 1994. Time of salt stress affects
growth and yield components of irrigated wheat. Agron. J. 86: 100-107.
15.Guo, F., and Tang, Z.C. 1999. Reduced Na+ and K+ permeability of K+ channel in plasma
membrane isolated from roots of salt tolerant mutant of wheat. Chinese Science Bulletin,
44: 9. 816-821.
16.Hirose, Y., Fujita, T., Ishii, T., et al. 2010. Antioxidative properties and flavonoid
composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry, Volume
119, Issue 4, 15 April 2010, Pp: 1300-1306.
17.Jacobsen, S.E., Monteros, C., Christiansen, J.L., Bravo, L.A., Corcuera, L.J., and Mujica, A.
2005. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various
phenological stages. Eur. J. Agron. 22: 131-139.
18.Jacobsen, S.E., Liu, F., and Jensen, C.R. 2009. Does root-sourced ABA play a role for
regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia
Horticulturae, 122: 2. 281-287.
19.Jacobsen, S.E., Christiansen, J.L., and Rasmussen, J. 2010. Weed harrowing and inter-row
hoeing in organic grown quinoa (Chenopodium quinoa Willd.). Outlook on Agriculture,
39: 3. 223-227.
20.Kafi, M., Borzoee, A., Salehi, M., Kamandi, A., Masoumi, A., and Nabati, J. 2014.
Physiology of Environmental stresses in plants. iranian academic center for education culture
and research of mashhad. (In Persian)
21.Kafi, M., Salehi, M., and Eshghizadeh, H.R. 2011. Biosaline Agriculture- plant, water and
soil management Approaches. iranian academic center for education culture and research of
mashhad. (In Persian)
22.Kerepesi, H., and Galiba, G. 2000. Osmotic and salt stress induced alteration in soluble
carbohydrate content in wheat seedling. Crop Science. 40: 482-487.
23.Koyro, H.W., and Eisa, S.S. 2008. Effect of salinity on composition, viability and
germination of seeds of Chenopodium quinoa Willd. Plant and Soil. 302: 1-2. 79-90.
24.Koyro, H.W., Lieth, H., and Eisa, S.S. 2008. Salt tolerance of chenopodium quinoa willd.,
grains of the Andes: Influence of salinity on biomass production, yield, composition of
reziaves in the seeds, water and solute relations. Tasks for Vegetation Sciences. 43: 133-145.
25.Khorsandi, O., Hassani, A., Sefidkon, F., Shirzad, H., and Khorsand, A. 2010. Effect of
salinity (NaCl) on growth, yield, essential oil content and composition of Agastache
foeniculum Kuntz. Iran. J. Med. Arom. Plant. 26: 3. 438-451. (In Persian)
26.Mass, E.V., and Griev, C.M. 1990. Spike and leaf development in salt stress of wheat.
Crop Sci. 30: 1309-1313.
27.Munns, R. 1993. Physiological processes limiting plant growth in saline soil: some dogmas
and hypotheses. Plant Cell Environment, 16: 15-24.
28.Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant
Biology. 59: 651-681.
29.Nabati, J., Kafi, M., Nezami, A., Rezvani Moghaddam, P., Masoumi, A., and Zare
Mehrgerdi, M. 2014. Evaluation of Quantitative and Qualitative Characteristic of Forage
Kochia (Kochia scoparia) in Different Salinity Levels and Time. Iran. J. Field Crop Res.
12: 4. 613-620.
30.Nabizadeh Marvdust, M.R., Kafi, M., Rashed, M.H., and Hasel, M. 2003. Effect of salinity
on growth, yield, collection of minerals and percentage of green cumin essence. J. Iran
Arable Stud. 1: 1. 53-59.
31.Naseer, Sh. 2001. Response of barley (Hordeum vulgare L.) at various growth stages to salt
stress. J. Biol. Sci. 1: 5. 259-326.
32.Panuccio, M.R., Jacobsen, S.E., Akhtar, S.S., and Muscolo, A. 2014. Effect of saline water
on seed germination and early seedling growth of the halophyte quinoa. AoB Plants, 6, p.
plu047.
33.Poustini, K. 2002. An Evaluation of 30 Wheat Cultivars Regarding the response to salinity
stress. Iran. Agric. Sci. 33: 1. 57-64. (In Persian)
34.Ruley, A.T., Sharma, N.C., and Sahi, S.V. 2004. Antioxidant defense in a lead accumulation
plant, Sensbania drummondii. Plant Physiology and Biochemical. 42: 899-906.
35.Sabet Teimouri, M., Khazaie, H.R., Nassiri Mahallati, M., and Nezami, A. 2010. Effect of
salinity on seed yield and yield components of individual plants, morphological
characteristics and leaf chlorophyll content of sesame (Sesamum indicum L.). Environmental
stresses in crop science. 2: 2. 119-130. (In Persian)
36.Salehi, M., Kafi, M., and Kiani, A. 2009. Growth analysis of kochia (Kochia scoparia (L.)
schrad) irrigated with saline water in summer cropping. Pak. J. Bot. 41: 1861-1870.
37.Shabala, S., Hariadi, Y., and Jacobsen, S.E. 2013. Genotypic difference in salinity tolerance
in quinoa is determined by differential control of xylem Na+ loading and stomatal density.
J. Plant Physiol. 170: 10. 906-914.
38.Shahidi, R., Kamkar, B., Latifi, N., and Galeshi, S. 2010. Effect of different salinity levels
and exposure times on individual’s seed yield and yield components of hull-less barley
(Hordeum vulgare L.). crop production. 3: 2. 49-63. (In Persian)
39.Tadayon, M.R., and Emam, Y. 2007. Physiological and Morphological Responses of
Two Barley Cultivars to Salinity Stress in Relation to Grain Yield. J. Water Soil Sci.
11: 1. 253-263. (In Persian)
40.Talebnejad, R., and Sepaskhah, A.R. 2015a. Effect of different saline groundwater depths
and irrigation water salinities on yield and water use of quinoa in lysimeter. Agric. Water.
Manage. 148: 177-188.
41.Talebnejad, R., and Sepaskhah, A.R. 2015b. Effect of deficit irrigation and different
saline groundwater depths on yield and water productivity of quinoa.Agricultural Water
Management, 159: 225-238.
42.Weisani, W., Sohrabi, Y., Heidarit, G., Siosemardeh, A., and Ghassemi, K. 2011.
Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress.
Austr. J. Crop Sci. 5: 1441.
43.Zamani, S., Nezami, M.T., Habibi, D., and Baybordi, A. 2010. Study of yield and
yield components of winter Rapeseed under salt stress conditions. Crop Production
Research. 1: 2. 109-121. (In Persian)
44.Zhu, J.K. 2001. Plant salt tolerance. Trends in Plant Science. 6: 2. 66-71.