ارزیابی عملکرد مدل WRF در شبیه سازی بارش‌های سنگین

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه تهران

2 پژوهشگاه ملی اقیانوس شناسی و علوم جوی

چکیده

سابقه و هدف: هر ساله وقوع بارش‌های سنگین در حوضه‌های سیل‌خیز کشور منجر به رخداد سیلاب‌ و خسارت‌های هنگفتی می‌گردد. پیش‌بینی بارش‌های سنگین یکی از گام‌های ضروری در تدوین و توسعه یک سیستم هشدار سیلاب ‌است. در سال‌های اخیر استفاده از مدل‌های عددی وضع هوا در پیش‌بینی بارش کاربرد گسترده‌ای داشته است. سرویس‌ها و مراکز هواشناسی مختلفی، پیش‌بینی‌های جوی را با حل مدل‌های عددی وضع هوا ارائه می‌کنند. لازم به ذکر است که پیش‌بینی‌های این مراکز در مقیاس بزرگ شبکه‌بندی شده‌اند. از جمله روش‌های دینامیکی که امروزه برای ریزمقیاس نمایی مدل‌های بزرگ مقیاس بسیار مورد توجه قرار گرفته است می‌توان به مدل پژوهش و پیش‌بینی وضع هوا (WRF) اشاره کرد. در مطالعه حاضر توانایی مدل WRF در پیش‌بینی بارش‌های سنگین در حوضه‌آبریز رودخانه کن تهران مورد ارزیابی قرار گرفته است.
مواد و روش‌ها: شرایط مرزی و اولیه مدل از داده‌های اجرای ساعت صفر (به وقت ساعت هماهنگ جهانی ) سامانه مدل‌سازی تمام کره‌ای موسوم به GFS از مرکز ملی پیش‌بینی‌های محیطی گرفته شده است. برای اجرای مدل سه دامنه در نظر گرفته شده است. دامنه بزرگ دارای تفکیک افقی 27 کیلومتر، دامنه میانی دارای تفکیک افقی 9 کیلومتر و دامنه کوچک که ارزیابی‌ پیش‌بینی‌ها در آن صورت گزفته است دارای تفکیک افقی 3 کیلومتر می‌باشد. ارزیابی‌ها‌ بر روی پیش‌بینی‌های کوتاه ‌مدت (24 ساعته) انجام شده است. بدین منظور سه مورد از بارش‌های تاریخی که منجر به رخداد سیلاب در منطقه مورد مطالعه شده است، انتخاب و با استفاده از مدل WRF شبیه‌سازی گردید. همچنین پیش‌بینی‌های ارائه شده توسط مرکز ملی پیش‌بینی زیست محیطی (NCEP) نیز از طریق تارنمای این مرکز تهیه گردید. سپس نتایج حاصل از برونداد مدل WRF و پیش‌بینی‌های بزرگ مقیاس NCEP با مقدار بارش مشاهداتی ثبت شده در ایستگاه‌های باران سنجی مقایسه شد.
یافته‌ها: نتایج نشان داد که بارش‌های پیش‌بینی شده توسط NCEPبسیار کمتر از مقدار واقعی برآورد شده‌اند، ضمن اینکه زمان وقوع بارش نیز به درستی پیش‌بینی نشده است. همچنین نتایج حاکی از عملکرد نسبتا مطلوب مدل WRF در پیش بینی بارش‌های سنگین است به طوریکه با اجرای این مدل مقدار شاخص خطا به مقدار قابل توجهی نسبت به مدل بزرگ مقیاس کاهش یافت.
نتیجه‌گیری: استفاده از مدل دینامیکی WRF دقت پیش‌بینی‌های بارش را نسبت به مدل جهانی افزایش می‌دهد. بنابراین پیشنهاد می‌گردد که در تدوین و توسعه سیستم هشدار سیلاب در حوضه‌های سیل‌خیز کشور از مدل WRF در ترکیب با مدل هیدرولوژیکی جهت پیش‌بینی سیلاب استفاده شود.
واژه‌های کلیدی: پیش‌بینی، بارش‌های سنگین، مدل WRF، حوضه رودخانه کن.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the WRF Model Performance for Heavy Rainfall Simulation A Case Study of the Kan Basin in Iran

نویسندگان [English]

  • Leila Goudarzi 1
  • Mohammad Ebrahim Banihabib 1
  • Parvin Ghafarian 2
چکیده [English]

Background and objectives: Every year, heavy rainfalls cause flood events and huge losses to life and property over the flood prone catchments of Iran. Heavy rainfall forecasting is an important step in development of a flood warning system. In recent decades, the Numerical Weather Prediction (NWP) models were widely used for weather prediction. Several operational centers, including the European Centre for Medium-Range Weather Forecasts (ECMWF), the National Centers for Environmental Prediction (NCEP), the Japan Meteorological Agency (JMA), and the United Kingdom Meteorological Office (UKMO) offer valuable operational numerical predictions at a global scale. Regional models were developed to admit the need for comprehensive and high-impact weather forecasting with higher spatial resolution. Weather Research and Forecasting (WRF) model is extensively applied for regional rainfall forecasting. The WRF modeling system is data assimilation system and a mesoscale forecast. It is aimed to progressive atmospheric research and operational forecasting. In this paper, the performance of the WRF model is evaluated for heavy rainfall simulation in Kan Watershed, Tehran.
Materials and methods: Three domains were used in the implementation of WRF model. Horizontal resolution of domains are 27km, 9 km and 3 km respectively. The initial boundary which used to run the model has been downloaded from the National Centers for Environmental Prediction (NCEP) from Global Forecasting System (GFS). It is worth noting that the physics scheme of model was selected using the results of the previous research on the selection of the best physics for WRF model. The evaluation was conducted on the short-term forecasting. For this purpose, three heavy rainfall events occurred over the study area have been simulated using the WRF model. Precipitation forecasts were also downloaded from NCEP's Internet web site. Then, the heavy rainfall simulated by WRF model and presented by NCEP were compared to the observed rainfall.
Results: The results showed that rainfall amount has been underestimated by NCEP forecasts and the time of precipitation events has not been correctly predicted. It is also observed that the WRF model is able to capture the heavy rainfall events, So that the error indexes (RMSE and MAE) significantly reduced compared to global model.
Conclusion: The WRF model increased the accuracy of precipitation forecasting compared to the global model. Thus, it is recommended to use the WRF model coupled with a hydrological model to development a flood warning systems in in the flash flood-prone watersheds.
Keywords: Prediction, Heavy Rainfall, WRF, Kan Watershed.

کلیدواژه‌ها [English]

  • prediction
  • Heavy Rainfall
  • WRF
  • Kan Watershed
- 1.Abbasi, M., Mohseni Sarai, M., Kheirkhah, M., Khalighi Sigaroudi, Sh., Rostamizad, Gh., and
Hosseini, M. 2010. Assessment of Watershed Management Activities on Time of
Concentration and Curve Number using HEC-HMS Model. J. Range Water. Manage. Iran. J.
Natur. Resour. 63: 3. 375-385. (In Persian)
2.Afandi, G., Morsy, M., and El Hussieny, F. 2013. Heavy rainfall simulation over Sinai
Peninsula using the weather research and forecasting model. Inter. J. Atm. Sci. Pp: 1-11.
3.Amini, L., Parhizkar, D., and Khakian, Gh. 2012. The performance of WRF model in heavy
rainfall forecasting in Esfahan province. The second national conference on flood
management and engineering with the approach of urban flooding, Tehran. (In Persian)
4.Azadi, M., Shirgholami, M., Hejam, S., and Sahraean, F. 2011. WRF Model Output
Postprocessing for Daily Precipitation over Iran. Iran-Water Resour. J. 7: 4. 71-81. (In Persian)
5.Azadi, M., Tghizade, A., and Memarian, M. 2010. Comparision of WRF and MM5 in rainfall
forecasting. 14th Geophysics Conference of Iran, Tehran, Iran's geopolitical Forum.
(In Persian)
6.Banihabib, M., and Arabi, A. 2010. Evaluation of the effects of watershed management
practices on the lead time. J. Environ. Sci. Technol. 12: 1. 77-81. (In Persian)
7.Banihabib, M.E., and Arabi, A. 2016. The impact of catchment management on emergency
management of flash-flood. Inter. J. Emer. Manage. 12: 2. 185-195.
8.Banihabib, M.E., Arabi, A., and Salha, A. 2015. A dynamic artificial neural network for
assessment of land-use change impact on warning lead-time of flood. Inter. J. Hydrol. Sci.
Technol. 5: 2. 163-178.
9.Chen, F., and Dudhia, J. 2001. Coupling an advanced land surface-hydrology model with the
Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity.
Monthly Weather Review. 129: 4. 569-585.
10.Cloke, H., and Pappenberger, F. 2009. Ensemble flood forecasting: a review. J. Hydrol.
375: 3. 613-626.
11.Dudhia, J. 1989. Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model. J. Atm. Sci. 46: 20. 3077-3107.
12.Falahi, M., Varvani, H., and Golian, S. 2011. Rainfall forecasting using the regression tree
model inordet to flood management. 5th National Conference on Watershed Management and
Soil and Water Resources Management, Kerman. (In Persian)
13.Goodarzi, L., and Roozbahani, A. 2013. Comparison of ARIMA and Holt-winters time series
models in rainfall forecasting. Second National Conference on Water crisis (climate change,
water and the environment), Shahrekord. (In Persian)
14.Goodess, C.M., Bárdossy, A., Haylock, M.R., and Ribalaygua, J. 2012. An intercomparison
of statistical downscaling methods for Europe and European regions, Climatic Research Unit
Research Publication, 11p.
15.Grell, G.A. 1993: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations.
Mon. Wea. Rev. 121: 764-787.
16.Hong, S.Y., Noh, Y., and Dudhia, J. 2006. A new vertical diffusion package with an explicit
treatment of entrainment processes. Monthly Weather Review. 134: 9. 2318-2341.
17.Hong, S.Y., Dudhia, J., and Chen, S.H. 2004. A revised approach to ice microphysical
processes for the bulk parameterization of clouds and precipitation. Monthly Weather
Review. 132: 1. 103-120.
18.Hsiao, L.F., Yang, M.J., Lee, C., Kuo, H.C., Shih, D., Tsai, C., and Lin, G.F. 2013.
Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in
Taiwan. J. Hydrol. 506: 55-68.
19.Kain, J.S., and Fritsch, J.M. 1993. Convective parameterization for mesoscale models:
The Kain-Fritsch scheme. In The representation of cumulus convection in numerical models.
American Meteorological Society, Pp: 165-170.
20.Koohi, M., Moosavi, M., Faridhoseini, A., Sanaenejad, H., and Jabari, H. 2012. Statistical
downscaling and the future scenarios of extreme precipitation events. J. Climatol. Res.
3: 12. 35-53. (In Persian)
21.Kryza, M., Werner, M., Wałszek, K., and Dore, A.J. 2013. Application and evaluation of the
WRF model for high-resolution forecasting of rainfall-a case study of SW Poland.
Meteorologische Zeitschrift. 22: 5. 595-601.
22.Laifang, L., Wenhong, L., and Jiming, J. 2014. Improvements in WRF simulation skills of
southeastern United States summer rainfall: physical parameterization and horizontal
resolution. Climate Dynamics. 43: 7-8. 2077-2091.
23.Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., and Clough, S.A. 1997. Radiative
transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the
longwave. J. Geophysic. Res. Atm. 102: 14. 16663-16682.
24.Moustris, K.P., Larissi, I.K., Nastos, P.T., and Paliatsos, A.G. 2011. Precipitation forecast
using artificial neural networks in specific regions of Greece. Water resources management.
25: 8. 1979-1993.
25.Obukhov, A.M. 1971. Turbulence in an atmosphere with a non-uniform temperature.
Boundary-layer meteorology. 2: 1. 7-29.
26.Partal, T., and Kişi, Ö. 2007. Wavelet and neuro-fuzzy conjunction model for precipitation
forecasting. J. Hydrol. 342: 1. 199-212.
27.Pennelly, C., Reuter, G., and Flesch, T. 2014. Verification of the WRF model for simulating
heavy precipitation in Alberta. Atmospheric Research. 135: 172-192.
28.Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., and Powers,
J.G. 2005. A description of the advanced research WRF version 2 (No. NCAR/TN-468+
STR). National Center for Atmospheric Research Boulder Co Mesoscale and Microscale
Meteorology Div.
29.Skamarock, W.C. 2008. A description of the Advanced Research WRF Version3. NCAR
Tech. Note NCAR/ TN-4751STR.
30.Taghavi, F., Neyestani, A., and Ghader, S. 2013. Short range precipitation forecasts
evaluation of WRF model over Iran. J. Earth Space Physic. 39: 2. 145-170. (In Persian)
31.Yazarloo, B., Zakerinia, M., Abdolhoseini, M., and Sharifan, H. 2014. The Prediction of
Heavy Precipitation Regarding the Impacts of 21th Century Climate Changes in selected
stations Golestan Province. J. Water Soil Cons. 22: 3. 137-150. (In Persian)
32.Zakeri, Z., Azadi, M., and Sahraean, F. 2014. WRF model output verification for rainfall on
Iran. J. Nivar. 87-86: 3-10. (In Persian)
33.Zheng, Y., Alapaty, K., Herwehe, J.A., Del Genio, A.D., and Niyogi, D. 2016. Improving
high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model
with an updated Kain-Fritsch scheme. Mon. Wea. Rev. 117: 3. 833-860.
34.Zoljoodi, M., Ghazimirsaeid, S., and Seifari, Z. 2013. Evaluation of physics scheme of WRF
model in precipitation forecasting in Iran. J. Geographic. Res. 28: 2. 187-194. (In Persian)