ارزیابی داده‌های تبخیر–تعرق، بارش و دمای هوای حاصل از مدل سطح زمین (GLDAS) با استفاده از داده‌های مشاهداتی در استان قزوین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد آبیاری و زهکشی/ دانشگاه گیلان

2 استادیار گروه مهندسی آب دانشگاه بین المللی امام خمینی (ره)

3 عضو هیئت علمی/ دانشگاه شهید بهشتی

چکیده

سابقه و هدف: کاهش ذخیره آب یک تهدید هیدرولوژیکی برای تولید محصولات کشاورزی و ثبات اجتماعی و اقتصادی در سراسر جهان به شمار می‌رود. در مناطق خشک و نیمه خشک نظیر کشور ایران که دارای بارش کم و تبخیر-تعرق زیاد می‌باشند این کاهش ذخیره آب به سرعت به آستانه خطر نزدیک می‌شود. لذا برآورد هرچه دقیق‌تر تبخیر-تعرق به‌عنوان یکی از مهم‌ترین پارامترهایی که باعث هدر رفت آب می‌شود می‌تواند گامی به‌سوی افزایش توانایی بشر در کنترل و مدیریت بحران آب باشد. متاسفانه با بروز پدیده خشکسالی و افزایش بی‌رویه مصرف آب و کاهش منابع آب‌های زیرزمینی، استان قزوین با بحران کمبود آب مواجه شده‌است. لذا برآورد تبخیر-تعرق به‌عنوان یکی از پارامترهای مهم بیلان آب منطقه و همچنین یکی از عوامل مهم در بحث هدر رفت آب می‌تواند تا حد زیادی برای این استان اهمیت داشته باشد. هدف اصلی این مقاله معرفی روشی برای افزایش دقت پارامتر تبخیر-تعرق حاصل از مدل سیستم جهانی اطلاعات سطح زمین(GLDAS) و همچنین معرفی تبخیر-تعرق اصلاح شده GLDAS به عنوان جایگزینی مناسب برای داده‌های تبخیر-تعرق لایسیمتر بخصوص در مناطق فاقد آمار و غیرقابل دسترس می‌باشد.
مواد و روش‌ها: استان قزوین با مساحتی معادل 15821 کیلـومتر مربـع به ترتیب بـین طول و عرض جغرافیایی 48 درجه و 53 دقیقه و 36 درجه و 50 دقیقه در گوشه شمال‌غرب و 50 درجه و 35 دقیقـه و 35 درجـه و 18 دقیقـه در گوشه جنوب شرقی در حوزه مرکزی ایران واقع شده است. در این پژوهش تبخیر–تعرق لایسیمتر و تبخیر–تعرق حاصل از GLDAS و همچنین بارش و دمای حاصل از مدل GLDAS و بارش ماهواره TRMM برای سال‌های 1379 تا 1382 مورد بررسی قرار گرفته‌‌اند. با توجه به داده‌های بارش 50 ساله منطقه، سال زراعی 80-79، 81-80 و 82-81 به ترتیب به عنوان سال زراعی خشک، نرمال و تر انتخاب شدند. شاخص‌های کمی که به منظور ارزیابی نتایج مورداستفاده قرار گرفته‌اند شامل ریشه میانگین مربعات خطا(RMSE)، میانگین خطای اریبی MBE‌ و میانگین مطلق خطا MAE می‌باشند.
یافته‌ها: نتایج بررسی داده‌های تبخیر-تعرق مدل GLDAS و لایسیمتر 95/0=R2، 68/0=RMSE نشان‌ می‌دهد که همبستگی بالایی بین این دو سری داده وجود دارد. علاوه بر تبخیر-تعرق، پارامترهای دما و بارش نیز به عنوان دو عنصر تاثیرگذار بر تبخیر-تعرق مورد بررسی قرار گرفتند. نتایج آماری نشان‌دهنده R2 بیش از 9/0 بین داده‌های دمای هوای حاصل از مدل GLDAS و داده‌های ایستگاهی و 82/0=R2 بین داده‌های بارش حاصل از مدل GLDAS و داده‌های ایستگاهی و همچنین 76/0=R2 بین داده‌های بارش ماهواره TRMM و داده‌های ایستگاهی است.
نتیجه‌گیری: با توجه به نتایج بدست آمده استفاده از داده‌های تبخیر-تعرق، دمای هوا و بارش حاصل از مدل GLDAS به عنوان جایگزینی مناسب برای داده‌های مشاهداتی در مناطق فاقد آمار قابل استفاده می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Evapotranspiration, Precipitation and Air Temperature from Global Land Data Assimilation System (GLDAS) by Lysimeter Data in Qazvin

نویسندگان [English]

  • zohreh faraji 1
  • abbas kaviani 2
  • alireza shakiba 3
1 Graduateed for Master science of Irrigation and Drainage/ University of Guilan
چکیده [English]

Abstract

Background and Objectives: Water storage depletion is an increasing hydrological threat to agricultural production and socio-economic stability across the globe. It is fast approaching threshold levels especially in arid/semiarid regions like IRAN with low precipitation and excessive evapotranspiration (ET). The more accurate for the estimate evapotranspiration as one of the most important parameters that cause water loss can be a step towards enhancing human ability to control and manage the water crisis. Unfortunately, with outbreak Phenomenon of drought and excessive increase in water consumption and reducing groundwater resources, Qazvin province is facing a water shortage crisis. The purpose of this article is to introduce a method for increasing the accuracy of Evapotranspiration of Global Land Data Assimilation System (GLDAS) model and also introducing the modified GLDAS evapotranspiration as a suitable replacement for the lysimeter evapotranspiration data, especially in regions where have no data and Inaccessible places.
Materials and Methods: Qazvin province, with an area of 15821 square kilometers, respectively, between longitude and latitude 48 degrees 53 minutes and 36 degrees 50 minutes north west corner and 50 degrees and 35 minutes and 35 degrees 18 minutes south-east corner located at the central basin of Iran. In this study lysimeter evapotranspiration and evapotranspiration , rainfall and temperature of GLDAS and also rainfall of TRMM derived for the years 1379 to 1382 ,were studied. According to 50-years of rainfall data, years 80-79, 81-80 and 82-81, respectively, were selected as dry, normal and wet crop year. Quantitative indices that have been used to evaluate the results are such as root mean square error (RMSE), mean bias error, MBE and Mean Absolute Error MAE.
Results: The results of the evapotranspiration data of GLDAS and lysimeter R2=0.95,RMSE=0.68 shows that there is a high correlation between the two data series. In addition to the Evapotranspiration, temperature and precipitation as well as two parameters affecting evapotranspiration were evaluated. The statistical results indicate that R2 is more than 0.9 between air temperature of GLDAS and station and R2=0.82 between precipitation of GLDAS and station and also R2=0.76 between TRMM satellite precipitation data and station data.
Conclusion: According to results, using data from evapotranspiration, temperature and precipitation derived from GLDAS model as an alternative to the observational data in areas where have no data is suggested.
Key words: Evapotranspiration, Remote sensing, GLDAS, Precipitation




a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

کلیدواژه‌ها [English]

  • Evapotranspiration
  • Remote sensing
  • GLDAS
  • Precipitation
-1.Absy, A., and Saeidi, M. 2011. Development of water quality index in Qazvin province,
Environmental sciences. 8: 3. 117-128. (In Persian)
2.Aghabeigi, V. 2014. Manage the urban water crisis caries water wells in the province of
Qazvin. The second national conference on crisis management and HSE vital arteries,
industry and urban management. (In Persian)
3.Bi, H., Ma, J., Zheng, W., and Zeng, J. 2016. Comparison of soil moisture in GLDAS
model simulations and in situ observations over the Tibetan Plateau. J. Geophysic. Atm.
121: 6. 2658-2678.
4.Davitt, A. 2011. Climate variability and drought in the South Platte River basin. Thesis
submitted in fulfillment of the requirement for the degree master of art (earth and
atmospheric science). The city college of the city university of New York.
5.Du, J.P., and Sun, R. 2012. Estimation of evapotranspiration for ungagged areas using
MODIS measurements and GLDAS data. Procedia Environmental Sciences. 13: 1718-1727.
6.Fangl, H., Beaudoing, H., Rodell, M., Tengl, W., and Vollmer, B. 2009. Global land data
assimilation (GLDAS) products, services and application from nasa hydrology data and
information services center (HDISC). ASPRS 2009 Annual Conference Baltimore, Maryland
March 8-13.
7.Faraji, Z., Vazifedust, M., Kaviani, A., Shakiba, A., and Fakharzadeh, M. 2014. Evaluation
rainfall, temperature and humidity of the Global Land Data Assimilation System (GLDAS)
Product in Khorasan Razavi. The second national conference on agricultural water
management. (In Persian)
8.Ferreira, V., Gong, Z., He, X., and Zhang, Y. 2013. Estimating Total Discharge in the
Yangtze River Basin Using Satellite-Based Observations. Remote Sensing. 5: 7. 3415-3430.
9.Gao, Y., Long, D., and Li, Z. 2008. Estimation of daily Evapotranspiration from remotely
sensed data under complex terrain over the upper Chao river basin in north China. Inter. J.
Rem. Sens. 29: 11. 3295-3315.
10.Liu, Y., He, Q., Zhang, H., and Mamtimin, A. 2012. Improving the CoLM in Taklimakan
Desert hinterland with accurate key parameters and an appropriate parameterization scheme,
Adv. Atmos. Sci. 29: 2. 381-390.
11.Longuevergne, L., Scanlon, B.R., and Wilson, C.R. 2010. GRACE hydrological estimates
for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water
Resources Research. 46: 11. doi:10.1029/2009WR008564.
12.Moiwo, J.P., Yang, Y., Tao, F., Wenxi, L., and Shumin, H. 2011. Water storage change
in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and
an empirical climate model,. Water Resources Research., vol, 47, W07521,
doi:10.1029/2010WR010157.
13.Mobasheri, M., and Khavarian, H. 2004. Analysis methods of using satellites to determine
the evapotranspiration. J. Geograph. Sci. 3: 3-4. 83-98. (In Persian)
14.Moiwo, J.P., Yang, Y., Li, H., Han, S., and Hu, Y. 2012. Comparison of GRACE with in situ
hydrological measurement data shows storage depletion in Hai River basin, Northern China.
Water SA. 35: 663-670.
15.Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.J., Arsenault,
K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D.,
and Toll, D. 2004. The Global Land Data Assimilation System. Bulletin of the American
Meteorological Society. 85: 3. 381-394.
16.Rui1, H., Teng, W., Vollmer, B., Mocko, D.M., Beaudoing, H.K., Whiteaker, T., Valentine,
D., Maidment, D., and Hooper, R. 2012. New and Improved GLDAS data sets and data
services at NASA GES DISC. Hydrology Data Holdings Portal Land Data Assimilation
System. 4th WCRP May 7-11.
17.Seyyedi, H., Anagnostou, E.N., Beighley, E., and McCollum, J. 2014. Satellite-driven
downscaling of global reanalysis precipitation products for hydrological applications.
Hydrology and Earth System Sciences. 18: 5077-5091.
18.Sokuti Oskooi, R., Mahdian, M., and MahmoudI, Sh. 2007. Compared the performance of
some geostatistical methods to predict the spatial distribution of soil salinity, Urmia plain
case study. J. Res. Cons. No. 74. (In Persian)
19.Szilagyi, J., and Jozsa, J. 2008. New findings about the complementary relationship-based
evaporation estimation methods. J. Hydrol. 354: 1-4. 171-186.
20.Wang, F., Wang, L., Koike, T., Zhou, H., Yang, K., Wang A., and Li, W. 2011.
Evaluation and application of a fineresolution global data set in a semiarid mesoscale
river basin with a distributed biosphere hydrological model. J. Geophysic. Res.
116: D21. doi: 10.1029/2011JD015990.
21.Xu, C.Y., and Singh, V.P. 2005. Evaluation of three complementary relationship
evapotranspiration models by water balance approach to estimate actual regional
evapotranspiration in different climatic regions. J. Hydrol. 308: 105-121.
22.Yang, Y., Moiwo, J.P., and Hu, Y. 2010. Estimation of irrigation requirement for sustainable
water resources reallocation in North China. Agricultural Water Management. 97: 1711-1721.