پهنه بندی استعداد اراضی نسبت به وقوع زمین لغزش با روش های دمپستر-شیفر و نسبت فراوانی در حوضه ‏سرخون کارون

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه خوارزمی

چکیده

سابقه و هدف
زمین لغزش ها یکی از مخاطرات مهم زمین شناسی در سراسر جهان می باشند. توسعه شهرهای و سازه های دست انسان بر روی مناطق به ‏طور بالقوه خطرناک همه ساله موجب خسارات گسترده به زیرساخت ها و گاهی اوقات موجب خسارات جانی می شود. شناسایی عوامل ‏موثر بر زمین لغزش های موجود در یک حوضه و پهنه بندی خطر آن یکی از ابزارهای اساسی جهت دستیابی به راهکارهای کنترل این ‏پدیده و انتخاب مناسب ترین و کاربردی ترین گزینه موثر می باشد. از این رو، این پژوهش با هدف شناسایی عوامل موثر در ایجاد پدیده ‏زمین لغزش و مشخص کردن مناطق دارای پتانسیل جهت پهنه بندی زمین لغزش در حوضه سرخون کارون با استفاده از روش های ‏دمپستر-شفر و نسبت فراوانی انجام گرفته است.‏
مواد و روش ها
بدین منظور پس از تهیه نقشه پراکنش زمین لغزش با استفاده از پیمایشات میدانی و تفسیر عکس های هوایی، لایه‌های اطلاعاتی فاصله از ‏آبراهه، فاصله از گسل، طبقات ارتفاعی، شیب، جهت شیب، شاخص رطوبت‎(TWI)‎‏ ،فاصله از جاده، کاربری اراضی، لیتولوژی و شاخص ‏توان حمل جریان ‏‎(SPI)‎‏ به عنوان عوامل موثر در وقوع زمین لغزش در منطقه مورد مطالعه انتخاب گردیدند و پس از اعمال روش های ‏دمپستر-شفر و نسبت فراوانی نقشه‌های نهایی پهنه بندی تهیه گردید. برای محاسبه وزن عوامل موثر از روش فرایند تحلیل سلسله مراتبی ‏کارشناسی در نرم افزار ‏expert choice‏ استفاده گردید. به منظور صحت سنجی روش های مورد استفاده از منحنی ‏ROC‏ استفاده ‏گردیده است.‏
یافته ها
اصلی ترین عوامل در بروز زمین لغزش های این منطقه بر اساس مشاهدات میدانی و نظرات کارشناسی شامل لیتولوژی، فاصله از جاده و ‏شیب به ترتیب با کسب امتیازات (۱۸۱/۰، ۱۶۳/۰، ۱۴۵/۰) می باشند و در مقابل عوامل بارندگی، شیب و شاخص خیسی ‏‎(TWI)‎‏ به ترتیب ‏با کسب امتیازات (۰۱۸/۰، ۰۳۶/۰، ۰۵۴/۰) کمترین تاثیر را در وقوع زمین لغزش داشته اند. طبق نتایج مدل نسبت فراوانی مقدار ‏‎ ‎AUCبالاتری (۹۲۷/۰) را نسبت به مدل دمپستر-شیفر (۸۵۸/۰) کسب نمود که این موضوع بیانگر همبستگی بالا بین نقشه خطر تهیه ‌شده و ‏نقشه پراکنش زمین‌لغزش و ارزیابی بهتر مدل نسبت فراوانی نسبت به مدل دمپستر-شیفر می‌باشد.‏
نتیجه گیری
نتایج حاصل از صحت سنجی نشان داد که مدل نسبت فراوانی دارای کارایی و دقت بالاتری نسبت به مدل دمپستر-شفر جهت تهیه نقشه ‏پهنه بندی می باشد. بر اساس نتایج حاصل از مدل نسبت فراوانی ۲۱۱۲۸۲۰۰متر مربع (۰۵/۷ درصد) از منطقه در کلاس خطر خیلی کم، ‏‏۶۷۱۴۴۵۰۰متر مربع (۴۵/۲۰ درصد) از منطقه در کلاس خطر کم، ۹۰۱۱۳۴۰۰ متر مربع (۴۵/۲۷ درصد) از منطقه در کلاس خطر متوسط، ‏‏۹۱۷۳۳۴۰۰ متر مربع (۹۴/۲۷ درصد) از منطقه در کلاس زیاد و در نهایت ‏‎56160000‎‏ متر مربع (۱۱/۱۷ درصد) از منطقه در کلاس خیلی ‏زیاد قرار گرفته است.‏

کلیدواژه‌ها


عنوان مقاله [English]

Land capability zonation toward Landslide occurance Using Dempster-shafer and ‎Frequency Ratio Models

نویسنده [English]

  • khalil rezaie 2
2 kharazmi university
چکیده [English]

Background and objectives
Landslides are significant natural geologic hazard around the world. Expansion of urban and man-‎made structures into potentially hazardous areas leads to extensive damage to infrastructure and ‎occasionally results in loss of life every year.Identification of factor affecting existing of landslide ‎as well as its zonation in the given watershed is one of the basic tools for landslide control and ‎selection of appropriate and effective solution as well. Thus, a research study with objective of ‎recognizing factor affecting landslide and determination of lands with hypothential to its occurrence ‎was conducted to prepare landslide zonation map for the Sorkhoon watershed using Dempster-‎shafer and Frequency Ratio Models.‎
Materials and methods:‎
to reach this goal, after preparing of Landslide inventory map using field survey and aerial photo ‎interpretation , data layers of distance from stream , distance from faults , elevation, slope, aspect , ‎Topography wetness index (TWI), distance from roads , land use, lithology and Stream Power index ‎‎(SPI) as Factors affecting landslides were selected and after applying Dempster - Shafer and ‎frequency Ratio methods the final Landslide Hazard zoning was prepared. For calculating of ‎weight of Affective Factors, was used the analytic hierarchy process in the software of expert ‎choice . To validation of used methods the ROC curve was used
Results: ‎
The main factors that caused the landslides in this area based on field observations and Expertise ‎opinions include lithology , distance from roads and slope , respectively, with scores ( 181/0 , 163/0 ‎‎, 145/0 ) and vis-à-vis factors of rainfall, slope and Topography wetness index (TWI) respectively ‎with scores ( 018/0 , 036/0 , 054/0 ) have the lowest impact on landslides. According to the results, ‎Frequency Ratio Models have obtained higher AUC ( 0.927 ) as compared to the Dempster - Shafer ‎‎( 0.858 ) that shows the high correlation between Hazard Map and distribution map Landslide ‎inventory map and better evaluation of Frequency Ratio toward Dempster – Shafer model.‎
Conclusion:‎
The results of the validation showed that the frequency ratio model Has higher efficiency and ‎accuracy toward Dempster - Shafer model for preparing of zonation map. Based on the results of ‎the frequency Ratio model 21128200 square meters ( 7.05 percentage ) of the region located in the ‎very low risk class , 67,144,500 square meters ( 20.45 percentage ) of the area located in the low ‎risk class, 90,113,400 square meters ( 27.45 percentage ) located in the moderate Risk class, , ‎‎91733400 square meters ( 27.94 percentage ) of the area located in the high class, and finally ‎‎56.160000 square meters ( 17.11 percentage ) of the area located in the very high risk class. ‎

کلیدواژه‌ها [English]

  • Zonation
  • Dempster-shafer model
  • Frequency Ratio Model
  • validation
1.Arabameri, A.R., and Shirani, K. 2016. Identification of Effective Factors on Landslide
Occurrence and its Hazard Zonation Using Dempster-Shafer theory (Case study: Vanak
Basin, Isfahan province). J. Water. Engin. Manage. 8: 1. 93-106. (In Persian)
2.Arabameri, A.R., and Shirani, K. 2016. Prioritization of Effective Factors on Landslide
Occurrence and its Susceptibility Zonation Using Statistical Methods, A Case Study: Vanak
catchment. Geodynamics Research International Bulletin. 3: 5. 22-38. (In Persian)
3.Arabameri, A.R., and Halabian, A.H. 2016. Landslide Hazard Zonation Using Statistical
Model of AHP (Case study: Zarand Saveh Basin). Physical Geomorphology. 28: 65-86.
(In Persian)
4.An, P., Moon, W.M., and Bonham-Carter, G.F. 1994. Uncertainty management in integration
of exploration data using the belief function. Nonrenewable Resources. 3: 60-71.
5.Ayalew, L., and Yamagishi, H. 2005. The application of GIS-based logistic regression for
landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan.
Geomorphology. 65: 15-31.
6.Ayalew, L., Yamagishi, H., Marui, H., and Kanno, T. 2005. Landslides in Sado Island of
Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two
methods and verifications. Eng. Geol. 81: 432-445.
7.Akgun, A., and Tu¨rk, N. 2010. Landslide susceptibility mapping for Ayvalik (Western
Turkey) and its vicinity by multicriteria decision analysis. Environ. Earth. Sci. 61: 595-611.
8.Basiri Dehkordi, H., Naderi Khorasgani, M., and Mohammadi, J. 2014. Landslide Hazard
Zonation in Ardal County (Chaharmahal va Bakhtiari province, Iran) Using Analytical
Hierarchy Process (AHP). J. Sci. Technol. Agric. Natur. Resour. Water and Soil Sci.
17: 73-82. (In Persian)
9.Constantin, M., Bednarik, M., Jurchescu, M.C., and Vlaicu, M. 2011. Landslide susceptibility
assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu
Basin (Romania). Environ. Earth Sci. 63: 397-406.
10.Chen, W., Pourghasemi, H.R., and Zhao, Z. 2016. A GIS-based comparative study of
Dempster-Shafer, logistic regression and artificial neural network models for landslide
susceptibility mapping. Geocarto international. DOI:10.1080/10106049.2016.1140824.
11.Dempster, A.P. 1967. Upper and lower probabilities induced by a multivalued mapping.
Annals of Mathematical Statistics. 38: 325-339.
12.Garfi, G., and Bruno, D.E. 2007. Fan morphodynamics and slope instability in the Mucone
River Basin (Sila Massif, Southern Italy): signification of weathering and role of land use
changes, Catena. 50: 181-196.
13.Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.T.
2012. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews.
112: 42-66.
14.Kanungo, D.P., Arora, M.K., Sarcar, S., and Gupta, R.P. 2006. A comparative study of
conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures
for landslide susceptibility zonation ln Darjeeling Himalayas. Engineering Geology.
85: 347-366.
15.Lee, S., and Pradhan, B. 2007. Landslide hazard mapping at Selangor, Malaysia using
frequency ratio and logistic regression models. Landslides. 4: 33-41.
16.Moradi, H.R., Majid, M., Pourghasemi, H.R., and Mostafazade, R. 2010. Analysis of
Landslide Hazard in Golestan province Using Dempster-shafer theory. Earth Science
Researches. 3: 1-14. (In Persian)
17.Mohammady, M., Pourghasemi, H.R., and Pradhan, B. 2012. Landslide susceptibility
mapping at Golestan province, Iran: A comparison between frequency ratio, Dempster–
Shafer and weights-of-evidence models. J. Asi. Earth Sci. 61: 221-236.
18.Mousavi Khatir, S.Z., Kavian, A., and Hashemzadeh Atoei, A. 2009. Statistical Analysis of
Some Morphometeric Characteristics and Effective Factors on Landslide Occurrence in
Sajarood Watershed. Water and Soil Conservation. 16: 2: 85-103. (In Persian)
19.Neuhauser, B., and Terhorst, B. 2007. Landslide Susceptibility Assessment Using Weightsof-evidence, Applied to a Study Area at the Jurassic Escarpment (SW-Germany).
Geomorphology. 86: 12-24.
20.Organization of The forests, pastures and Watershed Management, 2010.
21.Park, N.W. 2011. Application of Dempster-Shafer theory of evidence to GIS-based landslide
susceptibility analysis. Environ. Earth Sci. 62: 367-376.
22.Poorghasemi, H.R., Moradi, H.R., Fatemi Oghda, S.M., Mahdavifar, M.R., and Mohammadi,
M. 2011. Evaluation of geomorphological and geological parameters in landslide hazard
mapping using fuzzy logic and AHP method (Case study: a part of Haraz Watershed).
Water and Soil Conservation. 18: 4. 1-20. (In Persian)
23.Pedram, H. 1998. A preliminary study of rock avalanche of Kino mountain (Abikar village)
Labad-Bazoft Region, Chaharmahal va Bakhtiari, Proceedings of the conference of Earth
Sciences. Geological Survey. 3: 105-110. (In Persian)
24.Rozos, D.G., Bathrellos, D., and Skillodimou, H.D. 2011. Comparison of the implementation
of rock engineering system and analytic hierarchy process methods, upon landslide
susceptibility mapping, using GIS: a case study from the Eastern Achaia County of
Peloponnesus, Greece. Environ. Earth Sci. 63: 49-63.
25.Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H.R., Kumamoto, T.,
and Akgun, A. 2014. Application of frequency ratio, statistical index and weights-ofevidence models and their comparison in landslide susceptibility mapping in Central Nepal
Himalaya. Arab. J. Geosci. 7: 725-742.
26.Shafer, G. 1976. A mathematical theory of evidence. Princeton University Press. 302p.
27.Shirani, K., Hajihashemijazi, M.R., Niknezhad, S.A., and Rakhsha, S. 2012. Landslide Risk
Zoning Potential by Analytical Hierarchy Process (AHP) and Multivariate Regression (MR)
(Case study: Upstream of North Karoon Basin). J. Range Water. Manage. Iran. J. Natur.
Resour. 3: 395-409. (In Persian)
28.Shirani, K., and Seif, A. 2012. Investigation of Effective Parameters on Mass Movement by
Using of Landslide Hazard Zonation Maps (Case study: Northern Karoon Basin). Sci. Quar.
J. Geosci. 85: 149-158. (In Persian)
29.Shirani, K., and Arabameri, A.R. 2015. Landslide Hazard Zonation Using Logistic
Regression Method (Case study: Dez-e-Oulia Basin). J. Sci. Technol. Agric. Natur. Resour.
Water and Soil Sci., Isf. Univ. Technol. Isf. Iran. 72: 321-334. (In Persian)
30.Singhroy, V., Glenn, N., and Ohkura, H. 2004. Landslide hazard team report of the CEOS
disaster management support group. CEOS Disaster Information Server. National Academy
Press, Washington, D.C. 4: 130-132.
31.Tangestani, M. 2009. A comparative study of Dempster–Shafer and fuzzy models for
landslide susceptibility mapping using a GIS: An experience from Zagros. J. Asi. Earth Sci.
35: 66-73.
32.Varnes, D.J. 1984. Landslide hazard zonation: A review of Principles and Practice,
UNESCO, France, 63p.
33.Wu, W., and Sidle, R.C. 1995. A distributed slope stability model for steep forested basins.
Water Research. 31: 2097-2110.