پیش بینی و تحلیل عدم قطعیت تبخیر- تعرق گیاه مرجع در شرایط تغییر اقلیم در شیرا

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استادیار گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استادیار گروه مهندسی آب دانشگاه زابل

چکیده

مقدمه و هدف
افزایش جهانیِ گازهای گلخانه‌ای به دلیل متاثر ساختن متغیرهای مهمِ هواشناسی و هیدرولوژیکی همانند تبخیر- تعرق پتانسیل، می‌تواند تهدیدی جدی برای کشاورزی پایدار در شرایط وقوع تغییراقلیم محسوب شود. تبخیر- تعرق پتانسیل یکی از عوامل کلیدی موثر بر تولید محصولات کشاورزی است و نداشتن درک مناسب از مقدارِ آن می‌تواند امنیت آب و غذا را به مخاطره بیندازد. به همین دلیل در این پژوهش، مقدار این متغیرِ مهم تا سال 2100 تحت سناریوهای مختلف انتشار در مدل‌های گردش عمومی جو (GCMs) برآورد شد.
مواد و روش‌ها
بر اساسِ خروجی‌های بدست آمده از 15 مدل GCMs تحت سه سناریوی A1B، A2 وB1، تاثیر وقوعِ گرمایش جهانی بر میزان تبخیر-تعرق پتانسیل و عدم‌قطعیت‌های حاکم در پیش‌بینی آن در شهرستان شیراز تحلیل شد. داده‌های بزرگ‌مقیاسِ مدل‌های GCMs با مدل آماری LARS-WG در ایستگاه شیراز در سه بازه‌یِ زمانیِ 2040-2011 (دوره‌ی ابتدایی)، 2070-2041 (دوره‌ی میانی)و 2100-2071 (دوره‌ی انتهایی) ریزمقیاس شدند. بدین منظور، ابتدا مدل با استفاده از داده‌های هواشناسیِ روزانه در دوره‌ی پایه (2010-1981) واسنجی و صحت-سنجی شد و سپس برای ریزمقیاس‌سازی استفاده شد. توانایی مدل‌های تجربی، رگرسیون خطی و روش‌های هوش مصنوعی شامل سیستم استنتاج عصبی فازی و ماشین‌های بردار پشتبان در برآورد تبخیر- تعرق پتانسیل در مقایسه با روش فائو پنمن-مانتیث ارزیابی شد. سپس میزان تبخیر-تعرق پتانسیل در آینده با استفاده از مدل منتخب برآورد شد. در نهایت، دامنه‌ی عدم‌قطعیت برای مقادیرِ برآورد شده‌ی تبخیر- تعرق پتانسیل تحت مدل‌های مختلف GCMs در مقیاس‌های زمانیِ سالانه، فصلی و ماهانه تعیین شد.
نتایج و بحث
نتایج آزمون t و مقدارِ آماره‌های ارزیابی نشان داد مدل ریزمقیاس‌سازِ منتخب، توانایی قابل قبولی در تخمین مولفه‌های بارش و دماهای کاردینال تا سال 2100 دارد. روش ماشین‌های بردار پشتیبان بر اساس معیارهایِ جذر میانگین مربعات خطا (mm 42/0) و ضریب کارآیی مدل (97/0)، کم‌ترین خطا را در تخمین تبخیر- تعرق پتانسیل داشت که نشان‌دهنده تناسب این روش برای برآورد این پارامتر در اقلیم آینده-ی شیراز می‌باشد. در حد فاصل سال‌های 2100-2011، مقایسه‌ی میانگین نتایجِ 35 ترکیب از مدل‌های منتخب (15 مدل GCMs تحت سه سناریوی انتشار) و همچنین میانه‌های توابع توزیع احتمال در سه سناریوی A1B، A2 و B1 با مقدار آن‌ها در دوره پایه، حاکی از افزایش تبخیر-تعرق پتانسیل در مقیاس‌های زمانی سالانه، فصلی و ماهانه بود. دوره‌های میانی و انتهایی قرن 21 ام (6/15-3/10 درصد)، فصل‌های پربارش (9/31-4/5 درصد) و همچنین ماه‌های دسامبر، ژانویه و فوریه (45-5/8 درصد) بیش‌ترین افزایش در میزان تبخیر- تعرق پتاسیل را در مقایسه با دوره‌ی پایه تحت گرمایش جهانی خواهند داشت. بررسی توابع توزیع تجمعی احتمال نشان داد دامنه‌ی عدم قطعیت در تخمین تبخیر- تعرق پتانسیل در مقیاس‌های سالانه، فصلی و ماهانه به ترتیب در محدوده‌های 250-180، 7/132-1/47 و 4/56-6/19 میلی‌متر قرار دارد.
نتیجه‌گیری
یافته‌های این پژوهش نشان می‌دهد افزایش تقاضای اتمسفری در ماه‌های پربارش می‌تواند با کاهشِ ذخیره‌ی رطوبتی خاک برای کشت‌های بهاره و افزایش کمبودِ آب سبز در کشت‌های پاییزه، کشاورزی را در هر دو بخش دیم و آبی به مخاطره بیندازد که این امر مستلزم برنامه‌ریزی برای مواجه با این چالش جهانی است. با این وجود، باید در نظر داشت که ریسک‌پذیری برنامه‌ریزی‌های بلندمدت به دلیل عدم ‌قطعیت‌های بیش‌تر در تخمینِ تبخیر- تعرق پتانسیل بیش‌تر از مقیاس‌های زمانیِ کوتاه ‌مدت خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating and uncertainty analysis of potential evapotranspiration under climate change in a semi-arid region

چکیده [English]

Introduction
Global greenhouse gases increase could be a threat for the sustainable agriculture under climate change due to affecting important meteorological and hydrological variables. Potential evapotranspiration is an effective key factor influences on the production of agricultural crops and lacking an appropriate understanding of its values could endanger food and water securities. Therefore, in this research, the amount of this important variable was estimated under various emission scenarios in general circulation models of the atmosphere (GCMs) up to 2100.
Materials and methods
The projected effects of global warming on the values of potential evapotranspiration and the related estimation uncertainties were analyzed in Shiraz city based on the outputs of 15 GCMs under three scenarios of A1B, A2 and B1. The large scale data of GCMs were downscaled using the statistical method of LARS-WG in Shiraz station in three periods of 2011-2040 (initial period), 2041-2070 (middle period) and 2071-2100 (late period). To do so, the model was first calibrated and validated based on daily weather data during base period (1981-2010) and then was applied for downscaling process. For estimating potential evapotranspiration, the capability of empirical models, linear regressions and artificial intelligence methods including adaptive neuro fuzzy inference systems and support vector machines was compared with FAO-Penman-Maonteith method. Then, the amount of potential evapotranspiration in future was estimated using the selected model. Finally, the range of uncertainty for the estimated values of potential evapotranspiration under different GCMs were determined for annual, seasonal and monthly time scales.
Results
Results of t-test and the amount of criteria indices showed that the selected downscaling model is capable enough for estimating precipitation and cardinal temperatures up to 2100. Support vector machines model had the lowest error for estimating potential evapotranspiration based on the values of root mean square error (0.42 mm) and model efficiency coefficient (0.97) indicating its suitability for estimating the parameter in the future climate of Shiraz. Comparing the average results of 35 ensembles of the selected models (15 GCMs under three emission scenarios) as well as the median values for PDFs under the three scenarios of A1B, A2 and B1 for 2011- 2100 period with those of the base period indicted an increase in potential evapotranspiration for annual, seasonal and monthly time scales. The highest increase in potential evapotranspiration under global warming will happen in middle and late periods of 21th century (10.3-15.6 %), high rainy seasons (5.4-31.9 %) and also December, January and February will have compared to the base period. Analyzing the cumulative probability distribution functions showed that the range of uncertainty for estimating annual, seasonal and monthly potential evapotranspiration were, respectively, 180-250, 47.1-132.7 and 19.6-56.4 mm.
Conclusions
The finding of this research demonstrated that the increase in atmospheric demand in rainy months could threaten both rainfed and irrigated agriculture through decreasing soil moisture content for spring cultivation and increasing the green water deficit in autumn cultivations. The issue requires planning for coping with this global challenge. Nevertheless, it should be considered that long-term planning will be more risky than short ones due to having higher uncertainties for estimating potential evapotranspiration.

کلیدواژه‌ها [English]

  • Keyword: GCMs
  • Global Warming
  • Probability distribution functions
  • Shiraz
  • Support vector machines
1.Agarwal, A., Babel, M.S., and Maskey, Sh. 2014. Analysis of future precipitation in the Koshi river basin, Nepal. J. Hydrol. 513: 422-434. 
2.Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. 56: 301.
3.Alizadeh, A., Sayari, N., Hesami-Kermani, M.R., Bannayan-Aval, M., and Farid-Hossaini, A. 2010. Assessment of Climate Change Potential Impacts on Agricultural Water Use and Water Resources of Kashaf rood basin. J. Water Soil. 24: 4. 815-835.
4.Almasi, P., and Soltani, S. 2016. Assessment of the climate change impacts on flood frequency (Case study: Bazoft Basin, Iran). Stoch Environ. Res. Risk Assess. DOI 10.1007/s00477-016-1263-1.
5.Azari, M., Moradi, H.R., Saghafian, B., and Faramarzi, M. 2013. Assessment of Hydrological Effects of Climate Change in GorganroudRiver Basin. J. Water Soil. 27: 3. 537-547.
(In Persian)
6.CCSP. 2008. Climate Models: An Assessment of Strengths and Limitations. In: A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological and Environmental Research, Washington, D.C., USA, 124p.
7.Chen, H., Gue, J., Zhang, Z., and Xu, Ch.Y. 2013. Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future. Theor. Appl. Climatol. 113: 363-375.
8.Dai, X., Huo, Z., and Wang, H. 2011. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Res. 121: 441-449.
9.Dastorani, M.T., and Poormohammadi, S. 2012. Evaluation of the effects of climate change on temperature, precipitation and evapotranspiration in Iran. International Conference on Applied Life Sciences, Turkey, September 10-12, Pp: 73-79.
10.Deng, J., Chen, X., Du, Z., and Zhang, Y. 2011. Soil water simulation and predication using stochastic models based on LS-SVM for red soil region of China. Water Resour. Manage. 25: 2823-2836.
11.Etemadi, H., Samadi, S., and Sharifikia, M. 2014. Uncertainty analysis of statistical downscaling models using general circulation model over an international wetland. Clim. Dyn. 42: 2899-2920.
12.Etemadi, H., Samadi, S.Z., and Sharifikia, M. 2012. Statistical downscaling of
climatic variables in Shadegan Wetland Iran. Earth Sci. Clim. Change. 1: 508. doi:10.4172/scientificreports.508.
13.Girvetz, E.H., Zganjar, C., Raber, G.T., Mauer, E.P., Kareiva, P., and Lawler, J.J. 2009. Applied climate-change analysis: the climate wizard tool. PLOS ONE, 4, e8320.
14.Goodarzi, E., Dastorani, M., Massah Bavani, A., and Talebi, A. 2015. Evaluation of
the Change-Factor and LARS-WG Methods of Downscaling for Simulation of Climatic Variables in the Future (Case study: Herat Azam Watershed, Yazd - Iran). Ecopersia.
3: 1. 833-846. 
15.Harmsen, E.W., Miller, N.L., Schlegel, N.J., and Gonzalez, J.E. 2009. Seasonal climate change impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico. Agr. Water Manag. 96: 7. 1085-1095.
16.Hashmi, M.Z., Shamseldin, A.Y., and Melville, B.W. 2011. Comparison of SDSM and LARS-WG for Simulation and downscaling of extreme precipitation events in a watershed. Stoch. Environ. Res. Risk Assess. 25: 475-484.
17.IPCC. 2007. Summary for policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. CambridgeUniversity Press, Cambridge, 23p.
18.Jahanbani, H., Shui, L.T., Massah-Bavani, A., and Ghazali, A.H. 2011. Uncertainty of climate change and its impact on reference evapotranspiration in Rasht City, Iran. Water and Climate Change. 2: 1. 72-83.
19.Karimaldini, F., Shuib, L.T., Mohamed, T.A., Abdollahi, M., and Khalili, N. 2011. Daily evapotranspiration modeling from limited weather data using neuro-fuzzy computing technique. J. Irrig. Drain Engin. 138: 1. 21-34.
20.Kazemi-Rad, L., and Mohammadi, H. 2015. Climate change assessment in Gilan Province, Iran. Int. J. Agric. Crop. Sci. 8: 2. 86-93.
21.Knutti, R., Stocker, T.F., Joos, F., and Plattner, G.K. 2003. Probabilistic climate change projections using neural networks. Clim. Dyn. 21: 257-272.
22.Kouhi, M., and Sanaei Nejad, H. 2014. Evaluation of Climate Change Scenarios based on Two Statistical Downscaling Methods for Reference Evapotranspiration in Urmia Region. Iranian J. Irrig. Drain. 4: 7. 559-574.
23.Luo, Q. 2016. Necessity for post-processing dynamically downscaled climate projections for impact and adaptation studies. Stoch Environ Res Risk Assess. DOI 10.1007/s00477-016-1233-7.
24.Minville, M., Brissette, F., and Leconte, R. 2008. Uncertainty of the impact of climate change on the hydrology of a Nordic watershed. J. Hydrol. 358: 1-2. 70-83.
25.Morid, S., and Massah Bavani, A.R. 2010. Exploration of potential adaptation strategies
to climate change in the Zayandeh Rud irrigation system, Iran. Irrig. Drain. 59: 2. 226-238. (In Persian)
26.Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models.
Part 1: a discussion of principles. J. Hydrol. 10: 2082-2090.
27.Osman, Y., Al-Ansari, N., Abdellatif, M., Aljawad, S.B., and Knutsson, S. 2014. Expected Future Precipitation in Central Iraq Using LARS-WG Stochastic Weather Generator. Engineering. 6: 948-959.
28.Parchami Araghi, F., Mirlatifi, S.M., Ghorbani Dashtaki, S., and Mahdian, M.H. 2013. Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils. J. Hydrol. 481: 35-47.
29.Prudhomme, C., and Davies, H. 2009. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate. Climatic Change.
93: 1. 177-195.
30.Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A., and Taylor, K.E. 2007. Climate models and their evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the ARIV of IPCC. CambridgeUniversity Press, Cambridge, United Kingdom and New York, NY, USA.
31.Reddy, K.S., Kumar, M., Maruthi, V., Umesha, B., Vijayalaxmi, V., and Nageswar Rao, C.V.K. 2014. Climate change analysis in southern Telangana region, Andhra Pradesh using LARS-WG model. CURRENT SCIENCE. 107: 1. 54-62.
32.Sabziparvar, A.A., and Tabari, H. 2010. Regional Estimation of Reference Evapotranspiration in arid and Semiarid Regions. J. Irrig. Drain Engin. Pp: 724-731.
33.Soleimani-Nanadagani, M., Parsinejad, M., Araghinejad, Sh., and MasahBovani, A. 2012. Investigating climate change effects on the cultivation calendar, the growth duration and water requirement of winter wheat (Case study: Behshahr). Water research of Iran. 6: 10. 11-20.
(In Persian)
34.Tabari, H. 2010. Evaluation of reference crop evapotranspiration equations in various climates. Water Resour. Manage. 24: 2311-2337.
35.Tabari, H., Kisi, O., Ezani, A., and Hosseinzadeh Talaee, P. 2012. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climate data in a semi-arid highland environment. J. Hydrol. 444-445: 78-89.
36.Tabari, H., Martinez, C., Ezani, A., and Hosseinzadeh Talaee, P. 2013. Applicability of support vector machines and adaptive neuro-fuzzy inference system for modeling potato crop evapotranspiration. Irrig. Sci. 31: 4. 575-588.
 37.Terink, W., Immerzeel, W.W., and Droogers, P. 2013. Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Inter. J. Climatol. DOI: 10.1002/joc.3650.
38.Zhang, X., Xu, Y.P., and Fu, G. 2014. Uncertainties in SWAT extreme flow simulation under climate change. J. Hydrol. 515: 205-222.
39.Zou, P., Yang, J., Fu, J., Liu, G., and Li, D. 2010. Artificial neural network and time series models for predicting soil salt and water content. Agric. Water Manage. 97: 2009-2019.