1.Senay, G. B., Leake, S., Nagler, P. L., Artan, G., Dickinson, J., Cordova, J. T., & Glenn, E. P. (2011). Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25 (26), 4037-4049. https://doi.org/10.1002/hyp.8379.
2.Smith, M. (2000). The application of climatic data for planning and management of sustainable rainfed and irrigated crop production.
Agricultural and Forest Meteorology, 103 (1), 99-108.
https://doi.org/10.1016/S0168-1923(00) 00121-0.
3.Liu, X., & Yang, D. (2021). Irrigation schedule analysis and optimization under the different combination of P and ETp using a spatially distributed crop
model. Agricultural Water Management, 256, 10-89. https://doi.org/10.1016/j. agwat.2021.107084.
4.Snyder, R. L., Moratiel, R., Zhenwei Song, Swelam, A., Jomaa, I., & Shapland, T. (2011). Evapotranspiration Response to Climate Change. International Society for Horticultural Science. 922, 91-98. https://doi.org/10.17660/ActaHortic.2011.922.11.
5.Nikolaou, G., Neocleous, D., Manes, A., & Kitta, E. (2024). Calibration and validation of solar radiation-based equations to estimate crop evapotranspiration in a semi-arid climate. International Journal of Biometeorology, 68 (1), 1-15. https://doi.org/10. 1007/ s00484-023-02566-5.
6.Dinpashoh, Y., Jahanbakhsh-Asl, S., & Mosavi-Jahani, L. (2023). Evaluation of the three empirical models in estimation of potential evapotranspiration (Case study: Urmia Lake basin), Water and Soil Science, 33 (3), 21-32. doi: 10.22034/ ws.2021.46416.2419.
7.Dinpashoh, Y., & Babamiri, O. (2020). Trends in reference crop evapotranspiration in Urmia Lake basin. Arabian Journal of Geosciences, 13, 1-16.
8.Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V. P., & Kahya, E. (2011). Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399 (3-4), 422-433.
9.Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1 (2), 96-99. doi: 10. 13031/2013.26773) @1985.
10.Blaney, H. F., & Criddle, W. D. (1962). Determining consumptive use and irrigation water requirements No. 1275. U.S. Department of Agriculture, Beltsville.
11.Yang, Y., Shang, S., & Jiang, L. (2012). Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agricultural and Forest Meteorology, 164, 112-122. https://doi.org/ 10.1016/ j.agrformet.2012.05.011.
12.Chen, X., Yu, S., Zhang, H., Li, F., Liang, C., & Wang, Z. (2023). Estimating the Actual Evapotranspiration Using Remote Sensing and SEBAL Model in an Arid Environment of Northwest China. Water, 15 (8), 1555-1573. https://doi.org/10.3390/w15081555.
13.Mekonnen, Y. G., Alamirew, T., Malede, D. A., Pareeth, S., Bantider, A., & Chukalla, A. D. (2024). Tailoring the surface energy balance algorithm for land-improved (SEBALI) model using high-resolution land/use land cover for monitoring actual evapotranspiration. Agricultural Water Management, 303, 109058-109071. https://doi.org/ 10.1016/j.agwat.2024.109058.
14.Xu, T., Liu, S., Xu, L., Chen, Y., Jia, Z., Xu, Z., & Nielson, J. (2015). Temporal upscaling and reconstruction of thermal remotely sensed instantaneous evapotranspiration. Remote Sensing, 7 (3), 3400-3425. https://doi.org/10. 3390/rs70303400.
15.Fakhar, M. S., & Kaviani, A. (2024). Estimation of water consumption volume and water efficiency in irrigated and rainfed agriculture based on the WaPOR database in Iran. Journal of Water and Climate Change, 15 (6), 2731-2752. https://doi.org/10. 2166/wcc.2024.655.
16.Gundekar, H. G., Khodke, U. M., Sarkar, S., & Rai, R. K. (2008). Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region. Irrigation Science, 26, 169-175. https://doi.org/10.1007/ s00271-007-0083-y.
17.Bruton, J. M., McClendon, R. W., & Hoogenboom, G. (2000). Estimating daily pan evaporation with artificial neural networks. Transactions of the ASAE, 43 (2), 491-496. doi: 10.13031/ 2013.2730) @2000.
18.Zhao, H., Di, L., Guo, L., Zhang, C., & Lin, L. (2023). An Automated Data-Driven Irrigation Scheduling Approach Using Model Simulated Soil Moisture and Evapotranspiration. Sustainability, 15 (17), 12908-12922. https://doi.org/ 10.3390/su151712908.
19.Christensen, L., Tague, C. L., & Baron, J. S. (2008). Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem. Hydrological Processes, 22 (18), 3576-3588. https:// doi.org/10.1002/hyp.6961.
20.Song, L., Liu, S., Kustas, W. P., Nieto, H., Sun, L., Xu, Z., ... & Li, Q. (2018). Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale. Remote sensing of Environment,
219, 72-88. https://doi.org/10.1016/ j.rse.2018.10.002.
21.Sun, Z., Lotz, T., & Huang, Q. (2021). An ET-based two-phase method for the calibration and application of distributed hydrological models. Water Resources Management, 35, 1065-1077. https:// doi.org/10.1007/s11269-021-02774-x.
22.Cui, L., Meng, J., Li, Y., An, J., Zou, Z., Zhong, L., ... & Wu, G. (2024). Spatiotemporal Evolution Characteristics of 2022 Pakistan Severe Flood Event Based on Multi-Source Satellite Gravity Observations. Remote Sensing, 16 (9), 1601-1619. https://doi.org/10. 3390/rs16091601.
23.Okkan, U., Fistikoglu, O., Ersoy, Z. B., & Noori, A. T. (2024). Analyzing the uncertainty of potential evapotranspiration models in drought projections derived for a semi-arid watershed. Theoretical and Applied Climatology, 155 (3), 2329-2346. https:// doi.org/ 10.1007/ s00704-023-04817-2.
24.Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the Drought Phenomenon: The Role of Definitions. Water International, 10 (3), 111-120. https://doi.org/10.1080/02508068508686328.
25.Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391 (1-2), 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012.
26.Gibbs, W. J., & Maher, J. V. (1967). Rainfall deciles drought indicators. Bureau of Meteorology. Commonwealth of Australia, Melbourne, Australia, 48-84.
27.Carpintero, E., Anderson, M. C., Andreu, A., Hain, C., Gao, F., Kustas, W. P., & González-Dugo, M. P. (2021). Estimating evapotranspiration of mediterranean oak savanna at multiple temporal and spatial resolutions. Implications for water resources management. Remote Sensing, 13 (18), 3701-3722. https://doi.org/10. 3390/rs13183701.
28.Zhang, P., Cai, Y., Yang, W., Yi, Y., Yang, Z., & Fu, Q. (2019). Multiple spatio-temporal patterns of vegetation coverage and its relationship with climatic factors in a large dam-reservoir-river system. Ecological Engineering, 138, 188-199. https://doi.org/10.1016/ j.ecoleng.2019.07.016.
29.Saxena, D., Choudhary, M., & Sharma, G. (2024). Land use and land cover change impact on characteristics of surface evapotranspiration in semi-arid environment of Western Rajasthan, India. Water Practice & Technology, 19 (1), 154-169. https://doi.org/10. 2166/wpt.2023.222.
30.Song, Y., Khalid, Z., & Genton, M. G. (2024). Efficient stochastic generators with spherical harmonic transformation for high-resolution global climate simulations from CESM2-LENS2. Journal of the American Statistical Association, (just-accepted), 1-23. https://doi.org/10.1080/01621459.2024.2360666.
31.Fetene, Z. A., Weldegerima, T. M., Zeleke, T. T., & Nigussie, M. (2018). Harmonic analysis of precipitation time series in Lake Tana Basin, Ethiopia. Advances in Meteorology, 2018 (1), 1598195-1598217. https:// doi.org/10.1155/2018/1598195.
32.Raczyński, K., & Dyer, J. (2023). Harmonic oscillator seasonal trend (HOST) model for hydrological drought pattern identification and analysis. Journal of Hydrology, 620, 129514-129522. https://doi.org/10.1016/j.jhydrol.2023.129514.
33.Javadi, A., Ghahremanzadeh, M., Sassi, M., Javanbakht, O., & Hayati, B. (2024). Impact of climate variables change on the yield of wheat and rice crops in Iran (application of stochastic model based on Monte Carlo simulation). Computational Economics, 63 (3), 983-1000. https://doi.org/10. 1007/s10614-023-10389-0.
34.Mundform, D. J., Schaffer, J., Kim, M. J., Shaw, D., & Thongteeraparp, A. (2011). Number of replications required in Monte Carlo simulation studies: a synthesis of four studies. Journal of Modern Applied Statistical Methods,
10, 19-28. https://doi.org/10.56801/ 10.56801/v10.i.520.
35.Cassettari, L., Mosca, R., & Revetria, R. (2012). Monte Carlo simulation models evolving in replicated runs: a methodology to choose the optimal experimental sample size. Mathematical Problems in Engineering, 2012 (1), 463873-463884. https://doi.org/10.1155/2012/463873.
36.Schmidt, S. (2009). Shall we really do it again? The powerful concept of replication is neglected in the social sciences. Review of General Psychology, 13 (2), 90-100. https://doi.org/10.1037/ a0015108.
37.Cova, F., Strickland, B., Abatista, A., Allard, A., Andow, J., Attie, M., ... & Zhou, X. (2021). Estimating the reproducibility of experimental philosophy. Review of Philosophy and Psychology, 12, 9-44. https://doi.org/ 10.1007/s13164-018-0400-9.
38.Khalili, A., Bazrafshan, J., & Cheraghalizadeh, M. (2022). A Comparative study on climate maps of Iran in extended de Martonne classification and application of the method for world climate zoning, Journal of Agricultural Meteorology,
10 (1), 3-16. doi: 10.22125/agmj.2022. 156309. [In Persian]
39.Sabbaghi, M. A., Nazari, M., Araghinejad, S., & Soufizadeh, S. (2020). Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agricultural Water Management, 241, 106323-106345. https://doi.org/ 10.1016/j.agwat.2020.106323.
40.Naderianfar, E., Delbari, M., Afrasiab, P., & Kahkhamoghaddam, P. (2020). Comparing Different Processes for Mapping Reference Evapotranspiration in Iran. Irrigation Sciences and Engineering, 43 (3), 17-31. https:// doi.org/10.22055/jise.2017.20116.1439.
41.Steele, T. D. (1978). A simple-harmonic model for depicting the annual cycle of seasonal temperatures of streams. US Geological Survey, 78-155. https:// doi.org/10.3133/ofr78155.
42.Phillips, W. F. (1984). Harmonic analysis of climatic data. Solar Energy, 32 (3), 319-328. https://doi.org/10. 1016/0038-092X(84)90274-3.
43.Tarawneh, Q. (2016). Harmonic analysis of precipitation climatology in Saudi Arabia. Theoretical and Applied Climatology, 124, 205-217. https://doi. org/10.1007/s00704-015-1408-z.
44.Wang, K., Li, Y., Luo, Z., Yin, S., & Chan, P. W. (2018). Harmonic analysis of 130-year hourly air temperature in Hong Kong: detecting urban warming from the perspective of annual and daily cycles. Climate Dynamics, 51, 613-625. https://doi.org/ 10.1007/ s00382-017-3944-y.
45.Yang, Z. C. (2024). Data-driven discrete cosine transform (DCT)-based modeling and simulation for hourly air humidity prediction. Soft Computing, 28 (1), 541-563. https://doi.org/10. 1007/s00500-023-08297-4.
46.L’Ecuyer, P. (2012). Random Number Generation. In: Gentle, J., Härdle, W., Mori, Y. (eds) Handbook of Computational Statistics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https:// doi.org/10.1007/978-3-642-21551-3_3.
47.Babamiri, O., & Dinpajooh, Y. (2014). Comparison and Calibration of Nine Mass Transfer-Based Reference Crop Evapotranspiration Methods at Urmia Lake Basin, Journal of Water and Soil Conservation, 5 (21), 135-153. [In Persian]
48.Thomas, J., & Β Fiering, M. (1962). Mathematical Synthesis of Streamflow Sequences for the Analysis of River Basins by Simulation. Design of Water-Resource Systems: New Techniques for Relating Economic Objectives,
Engineering Analysis and Governmental Planning, 459-493.
https://doi.org/10. 4159/harvard.9780674421042.c15.
49.Talaee, P. H., Some’e, B. S., & Ardakani, S. S. (2014). Time trend and change point of reference evapotranspiration over Iran. Theoretical and Applied Climatology, 116 (3-4), 639-647. https://doi.org/10. 1007/s00704-013-0978-x.
50.Sun, J., Wang, G., Sun, X., Lin, S., Hu, Z., & Huang, K. (2020). Elevation‐dependent changes in reference evapotranspiration due to climate change. Hydrological Processes, 34 (26), 5580-5594. https://doi.org/ 10.1002/hyp.13978.
51.Collins, B., Ramezani Etedali, H., Tavakol, A., & Kaviani, A. (2021). Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957–2016 in Iran based on CRU TS gridded dataset. Journal of Arid Land, 13, 858-878. https://doi.org/ 10.1007/ s40333-021-0103-4.
52.He, H., Wu, Z., Li, D., Zhang, T., Pan, F., Yuan, H., ... & Wang, F. (2022). Characteristics of winter wheat evapotranspiration in Eastern China and comparative evaluation of applicability of different reference evapotranspiration models. Journal of Soil Science and Plant Nutrition, 22 (2), 2078-2091. https://doi.org/ 10.1007/ s42729-022-00795-y.
53.Singandhupe, R. B., & Sethi, R. R. (2005). Estimation of reference evapotranspiration and crop coefficient in wheat under semi-arid environment in India. Archives of Agronomy and Soil Science, 51 (6), 619-631. https:// doi.org/10.1080/03650340500273831.
54.Poudyal, S., & Chaudhary, A. (2023). Evapotranspiration and Precipitation Data for Calculating Irrigation Requirements in Utah. Utah Climate Center, 435, 1-16. https://extension. usu.edu/irrigation/research/evapotranspiration-and-precipitation-data.